Skip to main content
Log in

Natural Convection Study with Internal Heat Generation on Heat Transfer and Fluid Flow Within a Differentially Heated Square Cavity Filled with Different Working Fluids and Porous Media

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

To study the intricate natural convection in square cavity filled with porous medium with an electrically conductive fluid in the presence of internal heat source, a numerical methodology based on the finite volume method and a full multigrid acceleration is utilized in this paper. The Darcy–Brinkman is adopted to model the fluid flow and energy transport equations in order to predict the heat transfer process in the porous medium. Numerical solutions are generated for representative combinations of the controlling Grashof number (103 ≤ Gr ≤ 106), the Prandtl number (0.015 ≤ Pr ≤ 0.054), and the Darcy number (10−5 ≤ Da ≤ 10−2). Typical sets of streamlines, isotherms, and average Nusselt number profiles are presented to analyze the flow patterns set up by the competition between homogenous and porous medium. It is revealed that average Nusselt number values are strongly affected by the increase of Prandtl number and the presence of homogeneous medium overestimates the rate of heat transfer better than the presence of a porous medium. Correlations of heat transfer rates in porous medium cases are established in the current investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

Ar :

aspect ratio.

Cp :

specific heat capacity (Jkg−1 K−1).

H :

height of the enclosure (m).

K :

thermal conductivity (Wm−1 K−1).

Q :

heat generation per unit volume (W m−3).

T :

temperature (K).

u :

x-velocity component (ms−1).

U :

dimensionless X-velocity component, u H/ν.

v :

y-velocity component (m s−1).

V :

dimensionless Y-velocity component, v H/ν.

x :

x-Cartesian coordinate (m).

X :

dimensionless X-Cartesian coordinate, x/H.

y :

y-Cartesian coordinate (m).

Y :

dimensionless Y-Cartesian coordinate, y/H.

ΔT :

reference temperature difference (K), TH-TC.

Nu :

local Nusselt number.

\( \overline{Nu} \) :

average Nusselt number.

\( \overline{N{u}_{corr}} \) :

correlated average Nusselt number.

p :

pressure (Nm2).

P :

dimensionless pressure,pH20ν2.

Pr :

Prandtl number, ν/α.

Gr :

Grashof number, gβ ΔT H32.

Ra E :

External Rayleigh number, gβ ΔT H3/να.

Ra I :

Internal Rayleigh number, gβ Q H5/ναk.

S Q :

The dimensionless heat generation/absorption parameter RaI/PrRaE.

T C :

cold wall temperature (K).

T H :

Hot wall temperature (K).

T :

dimensional time (s).

α :

thermal diffusivity(m2 s−1).

β :

thermal expansion coefficient (K−1).

Δ :

difference value.

ν :

kinematic viscosity (m2 s−1).

μ :

dynamic viscosity, Ns/m2.

θ :

dimensionless temperature, (T-TC)/ΔT.

ρ :

fluid density (kg/ m3).

τ :

dimensionless time, t ν/H2.

σ :

ratio of heat capacities.

K :

permeability, m2.

ɛ :

Porosity values.

Da :

Darcy number, K/H2.

Φ :

generic variable (U, V, P, or θ).

Ψ:

dimensionless stream-function.

SD :

standard deviation.

References

  1. Ingham, D., & Pop, I. (2005). Transport phenomena in porous media III. Oxford: Elsevier Science.

    MATH  Google Scholar 

  2. Vafai, K. (2005). Handbook of porous media (2nd ed.). New York: Taylor & Francis.

    Book  MATH  Google Scholar 

  3. Nield, D. A., & Bejan, A. (2006). Convection in porous media, third ed. New York: Springer.

    MATH  Google Scholar 

  4. Brinkman, H. C. (1947). On the permeability of media consisting of closely packed porous particles. Applied Scientific Research, 1, 81–86.

    Google Scholar 

  5. Kuznetsov, A. V., & Nield, D. A. (2010). Thermal instability in a porous medium saturated by a nanofluid: Brinkman model. Transport in Porous Media, 81, 409–422.

    Article  MathSciNet  Google Scholar 

  6. Nield, D. A., & Kuznetsov, A. V. (2009). Thermal instability in a porous medium layer saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52, 5796–5801.

    Article  MATH  Google Scholar 

  7. Sankar, M., Bhuvaneswari, M., Sivasankaran, S., & Do, Y. (2011). Buoyancy induced convection in a porous cavity with partially thermally active sidewalls. International Journal of Heat and Mass Transfer, 54, 5173–5182.

    Article  MATH  Google Scholar 

  8. Alloui, Z., Dufau, L., Beji, H., & Vasseur, P. (2009). Multiple steady states in a porous enclosure partially heated and fully salted from below. International Journal of Thermal Sciences, 48, 521–534.

    Article  Google Scholar 

  9. Seta, T., Takegoshi, E., Kitano, K., Okui, K. (2006). Thermal lattice Boltzmann model for incompressible flows through porous media. Journal of Thermal Science and Technology, pp 90–100.

  10. Kang, S., Ha, K.-S., Kim, H. T., Kim, J. H., & Bang, I. C. (2013). An experimental study on natural convection heat transfer of liquid gallium in a rectangular loop. International Journal of Heat and Mass Transfer, 66, 192–199.

    Article  Google Scholar 

  11. Tou, S. K. W., Tso, C. P., & Zhang, X. (1999). 3-D numerical analysis of natural convective liquid cooling of a 3×3 heater array in rectangular enclosures. International Journal of Heat and Mass Transfer, 42, 3231–3244.

    Article  MATH  Google Scholar 

  12. Astanina, M. S., Sheremet, M. A., Oztop, H. F., & Abu-Hamdeh, N. (2018). MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. International Journal of Mechanical Sciences, 136, 493–502.

    Article  Google Scholar 

  13. Gibanov, N. S., Sheremet, M. A., Oztop, H. F., & Al-Salem, K. (2018). MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. Journal of Magnetism and Magnetic Materials, 452, 193–204.

    Article  Google Scholar 

  14. Toosi, M. H., & Siavashi, M. (2017). Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. Journal of Molecular Liquids, 238, 553–569.

    Article  Google Scholar 

  15. Chen, S., Gong, W., & Yan, Y. (2018). Conjugate natural convection heat transfer in an open-ended square cavity partially filled with porous media. International Journal of Heat and Mass Transfer, 124, 368–380.

    Article  Google Scholar 

  16. Kefayati, G. H. R. Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity, School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia. DOI:https://doi.org/10.1016/j.powtec.2016.05.032.

  17. Chakravarty, A., Datta, P., Ghosh, K., Sen, S., & Mukhopadhyay, A. (2018). Mixed convective heat transfer in an enclosure containing a heatgenerating porous bed under the influence of bottom injection. International Journal of Heat and Mass Transfer, 117, 645–657.

  18. Narasimhan, A., & Reddy, B. V. K. (2011). Laminar forced convection in a heat-generating bi-disperse porous medium channel. International Journal of Heat and Mass Transfer, 54, 636–644.

    Article  MATH  Google Scholar 

  19. Aminossadati, S. M., & Ghasemi, B. (2009). Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. European Journal of Mechanics-B/Fluids, 28, 630–640.

    Article  MATH  Google Scholar 

  20. Jmai, R., Ben-Beya, B., & Lili, T. (2013). Heat transfer and fluid flow of nanofluid-filled enclosure with two partially heated side walls and different nanoparticles. Superlattices and Microstructures, 53, 130–154.

    Article  Google Scholar 

  21. Berrahil, F., Benissaad, S., Chérifa, A., & Médale, M. (2014). Natural convection with volumetric heat generation and external magnetic field in differentially heated enclosure. Journal of Mechanical Engineering Science, 228, 2711–2727.

    Article  Google Scholar 

  22. Rashad, A. M., Armaghani, T., Chamkha, A. J., & Mansour, M. A. (2018). Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: Effects of a heat sink and source size and location. Chinese Journal of Physics, 56, 193–211.

    Article  Google Scholar 

  23. Sobamowo, M. G., Kamiyo, O. M., & Adeleye, O. A. (2017). Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation. Thermal Science and Engineering Progress, 1, 39–52.

    Article  Google Scholar 

  24. Brown, D. L., Cortez, R., & Minion, M. L. (2001). Accurate projection methods for the incompressible Navier-Stokes equations, Journal of Computational Physics, 168, 464–499.

  25. Hayase, T., Humphrey, J.A.C., & Greif, R. (1992). A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures, Journal of Computational Physics, 98, 108–118.

  26. Cheikh, N.B., Ben-Beya, B., & Lili, T. (2007). Benchmark solution for time-dependent natural convection flows with an accelerated full-multigrid method, Numer. Heat Transfer B, 52, 131–151.

  27. Barrett, R., Berry, M., Chan, T.F. et al. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM.

  28. Ben-Beya, B., & Lili, T. (2008). Three-dimensional incompressible flow in a two-sided nonfacing lid-driven cubical cavity, C. R. Mecanique, 336, 863–872.

  29. Hdhiri, N., Ben-Beya, B. & Lili, T. (2015). Effects of internal heat generation or absorption on heat transfer and fluid flow within partially heated square enclosure: homogeneous fluids and porous media, Journal of Porous Media, 18 (4): 415–435.

  30. Hdhiri, N. & Ben-Beya, B. (2018). Numerical study of laminar mixed convection flow in a lid-driven square cavity filled with porous media: Darcy-Brinkman-Forchheimer and Darcy-Brinkman models, International Journal of Numerical Methods for Heat & Fluid Flow, 28 (4): 857–877.

  31. Mahmoudi, A., Mejri, I., Abbassi, M., & Omri, A. (2014). Analysis of the entropy generation in a nanofluid-filled cavity in the presence of magnetic field and uniform heat generation/absorption, Journal of Molecular Liquids, 198, 63–77.

  32. Berrahil, F., Benissaad, S., Chérifa, A. & Médale, M. (2014). Natural convection with volumetric heat generation and external magnetic field in differentially heated enclosure, Journal Mechanical Engineering Science. 228, 2711–2727.

Download references

Acknowledgments

The authors would like to express their gratitude to King Faisal University, P.O. 380, Al-Ahsa-31982, Saudi Arabia, for providing the administrative and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basma Souayeh.

Ethics declarations

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed consent

None.

Funding statement

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hdhiri, N., Souayeh, B., Alfannakh, H. et al. Natural Convection Study with Internal Heat Generation on Heat Transfer and Fluid Flow Within a Differentially Heated Square Cavity Filled with Different Working Fluids and Porous Media. BioNanoSci. 9, 702–722 (2019). https://doi.org/10.1007/s12668-019-00626-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00626-y

Keywords

Navigation