Skip to main content
Log in

Extraction of Hydroxyapatite from Fish Bones and Its Application in Nickel Adsorption

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Precious materials obtained from biowaste have risen the attentions toward extracting and using these materials in various applications to address both economic and environmental demands. In the present study, we focused on the extraction of hydroxyapatite (HA) from fish bones through the thermal calcination method. The primary tests were carried out to characterize the fish bone-derived materials in terms of chemical composition, morphology, and viability. Therefore, series of characterizing tests including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and inductively coupled plasma (ICP) were carried out. Also, secondary electron microscopy equipped with energy-dispersive spectroscopy (EDS) was performed to determine morphology and elemental analysis of the obtained powder. Furthermore, the cell viability of fish bone-derived hydroxyapatite (FHA) along with its cell differentiation capability was evaluated by performing MTT and ALP assays and the results were compared with those of the commercial type of hydroxyapatite (CHA). The secondary phase of the current study relates to the capability of FHA and CHA on adsorbing nickel, as a model heavy metal, from aqueous solutions by performing bath adsorption experiments and considering initial concentration of nickel, adsorbent dosage, and contact time as the variables. In order to investigate kinetic model and adsorption mechanism, first-order, pseudo-second-order, and intraparticle diffusion kinetic models were used. Also, the equilibrium data were analyzed using Langmuir, Freundlich, and DKR adsorption isotherm models. The XRD and FT-IR results confirmed the successful extraction of HA from fish bones. Besides, ICP and EDS results revealed that the Ca/P ratio of FHA was higher than that of stoichiometric ratio (1.67). In addition, the MTT and ALP results indicated that FHA seemed to be a viable material for cell proliferation and differentiation. Besides, the adsorption outcomes indicated that FHA was sufficiently capable of adsorbing nickel. It was observed that the adsorption data were fitted well with pseudo-second-order and Langmuir isotherm models with maximum adsorption capacities of 50.25 and 48.78 mg g−1on FHA and CHA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Yearbook, Fishery and aquaculture Statistics, 2013.

  2. Elvevoll, E. O., & James, D. (2001). Nutrition and Health, 15, 155–167.

    Google Scholar 

  3. Ferraro, V., Cruz, I. B., Jorge, R. F., Malcata, F. X., Pintado, M. E., & Castro, P. M. (2010). Food Research International, 43, 2221–2233.

    Google Scholar 

  4. Gumisiriza, R., Mshandete, A. M., Rubindamayugi, F., Kansiime, F., & Kivaisi, A. K. (2009). African Journal of Environmental Science and Technology, 3, 013–020.

    Google Scholar 

  5. Pati, F., Adhikari, B., & Dhara, S. (2010). Bioresource Technology, 101, 3737–3742.

    Google Scholar 

  6. H.-J. Chai, J.-H. Li, H.-N. Huang, T.-L. Li, Y.-L. Chan, C.-Y. Shiau, C.-J. Wu, Journal of BioMed Research, 2010 (2010).

  7. Chen, S., Hirota, N., Okuda, M., Takeguchi, M., Kobayashi, H., Hanagata, N., & Ikoma, T. (2011). Acta Biomaterialia, 7, 644–652.

    Google Scholar 

  8. Boutinguiza, M., Lusquiños, F., Comesaña, R., Riveiro, A., Quintero, F., & Pou, J. (2007). Applied Surface Science, 254, 1264–1267.

    Google Scholar 

  9. Boutinguiza, M., Lusquiños, F., Riveiro, A., Comesaña, R., & Pou, J. (2009). Applied Surface Science, 255, 5382–5385.

    Google Scholar 

  10. Suchanek, W., & Yoshimura, M. (1998). Journal of Materials Research, 13, 94–117.

    Google Scholar 

  11. H. Aoki, Science and medical applications of hydroxyapatite, Ishiyaku Euroamerica, 1991.

  12. Hench, L. L. (1991). Journal of the American Ceramic Society, 74, 1487–1510.

    Google Scholar 

  13. Best, S., Porter, A., Thian, E., & Huang, J. (2008). Journal of the European Ceramic Society, 28, 1319–1327.

    Google Scholar 

  14. Zhang, H.-b., Zhou, K.-c., Li, Z.-y., & Huang, S.-p. (2009). Journal of Physics and Chemistry of Solids, 70, 243–248.

    Google Scholar 

  15. Rhee, S.-H. (2002). Biomaterials, 23, 1147–1152.

    Google Scholar 

  16. Pang, Y., & Bao, X. (2003). Journal of the European Ceramic Society, 23, 1697–1704.

    Google Scholar 

  17. Xu, J., Khor, K. A., Dong, Z., Gu, Y., Kumar, R., & Cheang, P. (2004). Materials Science and Engineering: A, 374, 101–108.

    Google Scholar 

  18. Tseng, Y.-H., Kuo, C.-S., Li, Y.-Y., & Huang, C.-P. (2009). Materials Science and Engineering: C, 29, 819–822.

    Google Scholar 

  19. Herliansyah, M., Hamdi, M., Ide-Ektessabi, A., Wildan, M., & Toque, J. (2009). Materials Science and Engineering: C, 29, 1674–1680.

    Google Scholar 

  20. Ooi, C., Hamdi, M., & Ramesh, S. (2007). Ceramics International, 33, 1171–1177.

    Google Scholar 

  21. Murugan, R., Ramakrishna, S., & Panduranga Rao, K. (2006). Materials Letters, 60, 2844–2847.

    Google Scholar 

  22. Huang, Y.-C., Hsiao, P.-C., & Chai, H.-J. (2011). Ceramics International, 37, 1825–1831.

    Google Scholar 

  23. Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., de Carlos, A., & León, B. (2012). Materials Science and Engineering: C, 32, 478–486.

    Google Scholar 

  24. Haberko, K., Bućko, M. M., Brzezińska-Miecznik, J., Haberko, M., Mozgawa, W., Panz, T., Pyda, A., & Zarębski, J. (2006). Journal of the European Ceramic Society, 26, 537–542.

    Google Scholar 

  25. Xiaoying, L., Yongbin, F., Duchun, G., Wei, C., & Eng, K. (2007). Mater, 342, 343.

    Google Scholar 

  26. Pallela, R., Venkatesan, J., & Kim, S. K. (2011). Ceramics International, 37, 3489–3497.

    Google Scholar 

  27. Piccirillo, C., Silva, M., Pullar, R., Braga da Cruz, I., Jorge, R., Pintado, M., & Castro, P. M. (2013). Materials Science and Engineering: C, 33, 103–110.

    Google Scholar 

  28. Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., & Chanthai, S. (2013). Chemical Engineering Journal, 215, 522–532.

    Google Scholar 

  29. Mobasherpour, I., Salahi, E., & Pazouki, M. (2012). Arabian Journal of Chemistry, 5, 439–446.

    Google Scholar 

  30. Stötzel, C., Müller, F., Reinert, F., Niederdraenk, F., Barralet, J., & Gbureck, U. (2009). Colloids and Surfaces B: Biointerfaces, 74, 91–95.

    Google Scholar 

  31. Feng, Y., Gong, J.-L., Zeng, G.-M., Niu, Q.-Y., Zhang, H.-Y., Niu, C.-G., Deng, J.-H., & Yan, M. (2010). Chemical Engineering Journal, 162, 487–494.

    Google Scholar 

  32. Sugiyama, S., Matsumoto, H., Hayashi, H., & Moffat, J. B. (2000). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169, 17–26.

    Google Scholar 

  33. O’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Bioresource Technology, 99, 6709–6724.

    Google Scholar 

  34. Öztürk, A., Artan, T., & Ayar, A. (2004). Colloids and Surfaces B: Biointerfaces, 34, 105–111.

    Google Scholar 

  35. Mobasherpour, I., Salahi, E., & Pazouki, M. (2011). Journal of Saudi Chemical Society, 15, 105–112.

    Google Scholar 

  36. Liao, C.-J., Lin, F.-H., Chen, K.-S., & Sun, J.-S. (1999). Biomaterials, (19), 1807–1813.

  37. C. Suryanarayana, M.G. Norton, X-ray diffraction: a practical approach, Springer, 1998.

  38. Smiciklas, I., Onjia, A., Raicevic, S., Janackovic, D., Mitric, M., & Hazard, J. (2008). Mater, 152, 876.

    Google Scholar 

  39. LeGeros RZ, Legeros JP, Phosphate minerals, 45(1984) 351–385.

  40. Stötzel, C., Müller, F. A., Reinert, F., Niederdraenk, F., Barralet, J. E., & Gbureck, U. (2009). Colloids and Surfaces B: Biointerfaces, 74, 91–95.

    Google Scholar 

  41. Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. (2012). Journal of the Taiwan Institute of Chemical Engineers, 43, 604–613.

    Google Scholar 

  42. Ho, Y., & McKay, G. (1998). Process Safety and Environmental Protection, 76, 332–340.

    Google Scholar 

  43. Lin, K., Pan, J., Chen, Y., Cheng, R., & Xu, X. (2009). Journal of Hazardous Materials, 161, 231–240.

    Google Scholar 

  44. Özcan, A. S., & Özcan, A. (2004). Journal of Colloid and Interface Science, 276, 39–46.

    Google Scholar 

  45. Giles, C. H., MacEwan, T. H., & Nakhwa, S. N. (1960). Smith D. Journal of the Chemical Society, 3973–3993.

  46. Foroughi-dahr, M., Abolghasemi, H., Esmaieli, M., Nazari, G., & Rasem, B. (2015). Process Safety and Environmental Protection, 95(226–236.

    Google Scholar 

  47. Ketcha Mbadcam, J., & Anagho, S. (2011). Journal of Environmental Chemistry and Ecotoxicology, 3, 290–297.

    Google Scholar 

  48. Augustine, A., Orike, B., & Edidiong, A. (2007). EJEAFChe, 6, 2221–2234.

    Google Scholar 

  49. Ketcha Mbadcam, J., Dongmo, S., & Dinka’a Ndaghu, D. (2012). International Journal of Current Research, 4, 162–167.

    Google Scholar 

  50. Wang, C.-C., Juang, L.-C., Lee, C.-K., Hsu, T.-C., Lee, J.-F., & Chao, H.-P. (2004). Journal of Colloid and Interface Science, 280, 27–35.

    Google Scholar 

  51. Liu, Z. R., & Zhou, S. Q. (2010). Process Safety and Environmental Protection, 88, 62–66.

    Google Scholar 

  52. Fouladgar, M., Beheshti, M., & Sabzyan, H. (2015). Equilibrium and kinetic modeling. Journal of Molecular Liquids, 30, 1060–1073.

    Google Scholar 

  53. Mangaleshwaran, L., Thirulogachandar, A., Rajasekar, V., Muthukumaran, C., & Rasappan, K. (2015). Journal of the Taiwan Institute of Chemical Engineers, 55(112–118.

    Google Scholar 

  54. Ewecharoen, A., Thiravetyan, P., & Nakbanpote, W. (2008). Chemical Engineering Journal, 137, 181–188.

    Google Scholar 

  55. Kyzas, G. Z., & Kostoglou, M. (2015). Separation and Purification Technology, 149(92–102.

    Google Scholar 

  56. Wu, Y., Luo, H., Wang, H., Zhang, L., Liu, P., & Feng, L. (2014). Journal of Colloid and Interface Science, 436, 90–98.

    Google Scholar 

  57. Oter, O., & Akcay, H. (2007). Water Environment Research, 1, 329–335.

    Google Scholar 

  58. Katsou, E., Malamis, S., Haralambous, K. J., & Loizidou, M. (2010). Journal of Membrane Science, 360, 234–249.

    Google Scholar 

  59. Jha, V. K., Matsuda, M., & Miyake, M. (2008). Journal of Hazardous Materials, 160, 148–153.

    Google Scholar 

  60. Ghaee, A., Shariaty-Niassar, M., Barzin, J., & Zarghan, A. (2012). Applied Surface Science, 258, 7732–7743.

    Google Scholar 

  61. Aksu, Z., Açıkel, Ü., Kabasakal, E., & Tezer, S. (2002). Water Research, 36, 3063–3073.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Hossein Dabiri.

Additional information

Highlights

• Fish bone-derived hydroxyapatite (FHA) powder was obtained via thermal calcination method.

• The extraction method is easy, economical, and favorable for environmental concerns.

• The FHA powder showed proper cell viability compared to commercial hydroxyapatite (CHA).

• Both FHA and CHA powders expressed almost similar performance in the adsorption of nickel.

• The experimental results were in accordance with pseudo-second-order equation.

• The nickel adsorption parameters were well fitted with Langmuir equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabiri, S.M.H., Rezaie, A.A., Moghimi, M. et al. Extraction of Hydroxyapatite from Fish Bones and Its Application in Nickel Adsorption. BioNanoSci. 8, 823–834 (2018). https://doi.org/10.1007/s12668-018-0547-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0547-y

Keywords

Navigation