Skip to main content
Log in

Optimization of Chitosan-Gelatin Nanofibers Production: Investigating the Effect of Solution Properties and Working Parameters on Fibers Diameter

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Electrospinning of chitosan-gelatin, using organic solvents, have already been reported. This study was designed to fabricate, characterize, and optimize electrospun chitosan-gelatin nanofibrous membranes using acetic acid as a more safe alternative aqueous solvent. Series of 90/10, 80/20, 70/30, 60/40, and 50/50 ratios of chitosan and gelatin were prepared using aqueous acetic acid as solvent. Blend solutions were electrospun after adding polyethylene oxide (PEO) to facilitate the electrospinning process. The effects of solution properties as well as the operating parameters on the architecture of the electrospun chitosan-gelatin nanofibers were investigated through evaluation of the electrical conductivity, viscosity, morphology, Fourier transform infrared spectroscopy (FTIR), mechanical properties, and hydrophilicity. Uniform beadless nanofibrous hydrophilic mats were fabricated with average fiber diameters from 229.79 ± 41.45 to 308.66 ± 50.03 nm. Concentration was the main parameter among all solution properties in controlling nanofiber diameter. The fiber diameters decreased with increasing the voltage, decreasing the feed rate, and increasing the needle to collector distance up to a certain amount. The interactions between the components of the blend solutions were confirmed by FTIR spectra. The Young’s moduli of all chitosan-gelatin blend nanofibers were higher than the chitosan nanofibers and increased significantly after cross-linking (P < 0.05). Chitosan-gelatin blends with different ratios of each biopolymer can be electrospun using acetic acid as an aqueous solvent and addition of PEO to yield hydrophilic membranes with uniform and beadless nanofibers. The architectural similarity of the nanofibrous chitosan-gelatin mats to natural ECM makes them great candidates for different biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Garg, K., & Bowlin, G. L. (2011). Electrospinning jets and nanofibrous structures. Biomicrofluidics, 5(1), 013403. https://doi.org/10.1063/1.3567097.

    Article  Google Scholar 

  2. Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004.

    Article  Google Scholar 

  3. La Mantia, F. P., Morreale, M., Botta, L., Mistretta, M. C., Ceraulo, M., & Scaffaro, R. (2017). Degradation of polymer blends: A brief review. Polym Degrad Stab 145 (Supplement C), 79–92. https://doi.org/10.1016/j.polymdegradstab.2017.07.011.

    Article  Google Scholar 

  4. Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Adv Drug Del Rev, 97, 4–27. https://doi.org/10.1016/j.addr.2015.11.001.

    Article  Google Scholar 

  5. Su, K., & Wang, C. (2015). Recent advances in the use of gelatin in biomedical research. Biotechnology Letters, 37(11), 2139–2145. https://doi.org/10.1007/s10529-015-1907-0.

    Article  Google Scholar 

  6. Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(24), 4195–4200. https://doi.org/10.1242/jcs.023820.

    Article  Google Scholar 

  7. Pandey, A. R., Singh, U. S., Momin, M., & Bhavsar, C. (2017). Chitosan: Application in tissue engineering and skin grafting. Journal of Polymer Research, 24(8), 125. https://doi.org/10.1007/s10965-017-1286-4.

    Article  Google Scholar 

  8. Ahmed, S., & Ikram, S. (2016). Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci, 10(1), 27–37. https://doi.org/10.1016/j.als.2016.04.001.

    Article  Google Scholar 

  9. Mirzaei, E., Faridi-Majidi, R., Shokrgozar, M. A., & Asghari Paskiabi, F. (2014). Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold. Nanomed J, 1(3), 137–146. https://doi.org/10.7508/nmj.2014.03.003.

    Article  Google Scholar 

  10. Dai, T., Tanaka, M., Huang, Y.-Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Review of Anti-Infective Therapy, 9(7), 857–879. https://doi.org/10.1586/eri.11.59.

    Article  Google Scholar 

  11. Haider, S., Al-Masry, W. A., Bukhari, N., & Javid, M. (2010). Preparation of the chitosan containing nanofibers by electrospinning chitosan–gelatin complexes. Polymer Engineering & Science, 50(9), 1887–1893. https://doi.org/10.1002/pen.21721.

    Article  Google Scholar 

  12. Wang, S., & Zhao, G. (2012). Quantitative characterization of the electrospun gelatin–chitosan nanofibers by coupling scanning electron microscopy and atomic force microscopy. Materials Letters, 79, 14–17. https://doi.org/10.1016/j.matlet.2012.03.044.

    Article  Google Scholar 

  13. Dhandayuthapani, B., Krishnan, U. M., & Sethuraman, S. (2010). Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 94B(1), 264–272. https://doi.org/10.1002/jbm.b.31651.

    Article  Google Scholar 

  14. Pezeshki-Modaress, M., Zandi, M., & Mirzadeh, H. (2015). Fabrication of gelatin/chitosan nanofibrous scaffold: Process optimization and empirical modeling. Polymer International, 64(4), 571–580. https://doi.org/10.1002/pi.4843.

    Article  Google Scholar 

  15. Charernsriwilaiwat, N., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., & Supaphol, P. (2010). Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate Polymers, 81(3), 675–680. https://doi.org/10.1016/j.carbpol.2010.03.031.

    Article  Google Scholar 

  16. Jafari, J., Emami, S. H., Samadikuchaksaraei, A., Bahar, M. A., & Gorjipour, F. (2011). Electrospun chitosan-gelatin nanofiberous scaffold: Fabrication and in vitro evaluation. Bio-medical Materials and Engineering, 21(2), 99–112. https://doi.org/10.3233/bme-2011-0660.

    Article  Google Scholar 

  17. Zheng, Y., & Wyman, I. (2016). Supramolecular nanostructures based on Cyclodextrin and poly(ethylene oxide): Syntheses, structural characterizations and applications for drug delivery. Polymers, 8(5), 198.

    Article  Google Scholar 

  18. Ma, L., Deng, L., & Chen, J. (2014). Applications of poly(ethylene oxide) in controlled release tablet systems: A review. Drug Development and Industrial Pharmacy, 40(7), 845–851. https://doi.org/10.3109/03639045.2013.831438.

    Article  Google Scholar 

  19. Frohbergh, M. E., Katsman, A., Botta, G. P., Lazarovici, P., Schauer, C. L., Wegst, U. G., & Lelkes, P. I. (2012). Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials, 33(36), 9167–9178. https://doi.org/10.1016/j.biomaterials.2012.09.009.

    Article  Google Scholar 

  20. Li, Q., Wang, X., Lou, X., Yuan, H., Tu, H., Li, B., & Zhang, Y. (2015). Genipin-crosslinked electrospun chitosan nanofibers: Determination of crosslinking conditions and evaluation of cytocompatibility. Carbohydrate Polymers, 130, 166–174. https://doi.org/10.1016/j.carbpol.2015.05.039.

    Article  Google Scholar 

  21. Chen, Z., Mo, X., He, C., & Wang, H. (2008). Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydrate Polymers, 72(3), 410–418. https://doi.org/10.1016/j.carbpol.2007.09.018.

    Article  Google Scholar 

  22. Acevedo, C. A., Díaz-Calderón, P., López, D., & Enrione, J. (2015). Assessment of gelatin–chitosan interactions in films by a chemometrics approach. CyTA Journal of Food, 13(2), 227–234. https://doi.org/10.1080/19476337.2014.944570.

    Article  Google Scholar 

  23. Pakravan, M., Heuzey, M.-C., & Ajji, A. (2011). A fundamental study of chitosan/PEO electrospinning. Polymer, 52(21), 4813–4824. https://doi.org/10.1016/j.polymer.2011.08.034.

    Article  Google Scholar 

  24. Rahman, M. A., Khan, M. A., & Tareq, S. M. (2010). Preparation and characterization of polyethylene oxide (PEO)/gelatin blend for biomedical application: Effect of gamma radiation. Journal of Applied Polymer Science, 117(4), 2075–2082. https://doi.org/10.1002/app.32034.

    Article  Google Scholar 

  25. Rakkapao, N., Vao-soongnern, V., Masubuchi, Y., & Watanabe, H. (2011). Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction. Polymer, 52(12), 2618–2627. https://doi.org/10.1016/j.polymer.2011.03.044.

    Article  Google Scholar 

  26. Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., du Toit, L. C., & Ndesendo, V. M. K. (2013). A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013(22). https://doi.org/10.1155/2013/789289.

    Article  Google Scholar 

  27. Bizarria, M. T. M., d'Ávila, M. A., & Mei, L. H. I. (2014). Non-woven nanofiber chitosan/peo membranes obtained by electrospinning. Brazilian Journal of Chemical Engineering, 31, 57–68.

    Article  Google Scholar 

  28. Miri, M. A., Movaffagh, J., Najafi, M. B. H., Najafi, M. N., Ghorani, B., & Koocheki, A. (2016). Optimization of elecrospinning process of zein using central composite design. Fiber Polym, 17(5), 769–777. https://doi.org/10.1007/s12221-016-6064-0.

    Article  Google Scholar 

  29. Veleirinho, B., Rei, M. F., & Lopes-Da-Silva, J. A. (2008). Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. Journal of Polymer Science Part B: Polymer Physics, 46(5), 460–471. https://doi.org/10.1002/polb.21380.

    Article  Google Scholar 

  30. Okutan, N., Terzi, P., & Altay, F. (2014). Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39, 19–26. https://doi.org/10.1016/j.foodhyd.2013.12.022.

    Article  Google Scholar 

  31. Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, 48(23), 6913–6922. https://doi.org/10.1016/j.polymer.2007.09.017.

    Article  Google Scholar 

  32. Haider A, Haider S,Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. ARAB J CHEM. https://doi.org/10.1016/j.arabjc.2015.11.015

    Article  Google Scholar 

  33. Han, W., Minhao, L., Xin, C., Junwei, Z., Xindu, C., & Ziming, Z. (2015). Study of deposition characteristics of multi-nozzle near-field electrospinning in electric field crossover interference conditions. AIP Advances, 5(4), 041302. https://doi.org/10.1063/1.4902173.

    Article  Google Scholar 

  34. Su, P., Wang, C., Yang, X., Chen, X., Gao, C., Feng, X.-X., Chen, J.-Y., Ye, J., & Gou, Z. (2011). Electrospinning of chitosan nanofibers: The favorable effect of metal ions. Carbohydrate Polymers, 84(1), 239–246. https://doi.org/10.1016/j.carbpol.2010.11.031.

    Article  Google Scholar 

  35. Cebi, N., Durak, M. Z., Toker, O. S., Sagdic, O., & Arici, M. (2016). An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chemistry, 190(Supplement C), 1109–1115. https://doi.org/10.1016/j.foodchem.2015.06.065.

    Article  Google Scholar 

  36. Jalaja, K., & James, N. R. (2015). Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose. International Journal of Biological Macromolecules, 73, 270–278. https://doi.org/10.1016/j.ijbiomac.2014.11.018.

    Article  Google Scholar 

  37. Reddy, N., Reddy, R., & Jiang, Q. (2015). Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 33(6), 362–369. https://doi.org/10.1016/j.tibtech.2015.03.008.

    Article  Google Scholar 

  38. V, J. L., Wei, S., & S, C. L. (2008). Crosslinked, electrospun chitosan–poly(ethylene oxide) nanofiber mats. Journal of Applied Polymer Science, 109(2), 968–975. https://doi.org/10.1002/app.28107.

    Article  Google Scholar 

  39. Schiffman, J. D., & Schauer, C. L. (2007). Cross-linking chitosan nanofibers. Biomacromolecules, 8(2), 594–601. https://doi.org/10.1021/bm060804s.

    Article  Google Scholar 

  40. Jing, X., Mi, H. Y., Peng, J., Peng, X. F., & Turng, L. S. (2015). Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydrate Polymers, 117, 941–949. https://doi.org/10.1016/j.carbpol.2014.10.025.

    Article  Google Scholar 

  41. Denis, P. D., Ian, S. M., Malika, A., & William, M. G. (2010). Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. Journal of Biomaterials Applications, 26(3), 327–347. https://doi.org/10.1177/0885328210372148.

    Article  Google Scholar 

  42. Tallawi, M., Rosellini, E., Barbani, N., Cascone, M. G., Rai, R., Saint-Pierre, G., & Boccaccini, A. R. (2015). Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: A review. J R Soc Interface, 12(108), 20150254. https://doi.org/10.1098/rsif.2015.0254.

    Article  Google Scholar 

  43. Sousa, I., Mendes, A., & Bártolo, P. J. (2013). PCL scaffolds with collagen bioactivator for applications in tissue engineering. Procedia Engineer 59 (Supplement C), 279–284. https://doi.org/10.1016/j.proeng.2013.05.122.

    Article  Google Scholar 

  44. Halake, K., Kim, H. J., Birajdar, M., Kim, B. S., Bae, H., Lee, C., Kim, Y. J., Kim, S., Ahn, S., An, S. Y., Jung, S. H., & Lee, J. (2016). Recently developed applications for natural hydrophilic polymers. J Ind Eng Chem 40 (Supplement C), 16–22. https://doi.org/10.1016/j.jiec.2016.06.011.

    Article  Google Scholar 

Download references

Acknowledgements

This study was part of a research project which was financially supported by the vice chancellor for research of Mashhad University of Medical Sciences (No. 931634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jebrail Movaffagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, N., Rozbeh, Z., Afrough, T. et al. Optimization of Chitosan-Gelatin Nanofibers Production: Investigating the Effect of Solution Properties and Working Parameters on Fibers Diameter. BioNanoSci. 8, 778–789 (2018). https://doi.org/10.1007/s12668-018-0540-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0540-5

Keywords

Navigation