Skip to main content
Log in

Antihepatotoxic Activity of Liposomal Silibinin

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The liposomal form of silibinin was obtained, and its antihepatotoxic activity in mice was studied using a model of acute toxic hepatitis caused by injection of carbon tetrachloride or paracetamol. It was shown that the use of the drug in therapy or prevention regimens leads to normalization of levels of transaminases and total protein in the blood of experimental animals. The results of the study showed that liposomal silibinin when administered intravenously shows a more pronounced hepatoprotective effect compared to intragastric administration of free silibinin. Thus, the effectiveness of the therapeutic action of silibinin can be significantly increased by using its liposomal form. Liposomal drug, in contrast to native silibinin, can be injected directly into the blood that significantly increases its bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saller, R., Meier, R., & Brignoli, R. (2001). The use of silymarin in the treatment of liver diseases. Drugs, 61, 2035–2063. https://doi.org/10.2165/00003495-200161140-00003.

    Article  Google Scholar 

  2. Pradhan, S. C., & Girish, C. (2006). Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. The Indian Journal of Medical Research, 124, 491–504.

    Google Scholar 

  3. Abenavoli, L., Capasso, R., Milic, N., & Capasso, F. (2010). Milk thistle in liver diseases: past, present, future. Phytotherapy Research, 24, 1423–1432. https://doi.org/10.1002/ptr.3207.

    Article  Google Scholar 

  4. Vargas-Mendoza, N., Madrigal-Santillán, E., Morales-González, A., Esquivel-Soto, J., Esquivel-Chirino, C., García-Luna, Y., González-Rubio, M., Gayosso-de-Lucio, J. A., & Morales-González, J. A. (2014). Hepatoprotective effect of silymarin. World Journal of Hepatology, 6, 144–149. https://doi.org/10.4254/wjh.v6.i3.144.

    Article  Google Scholar 

  5. Wu, J. W., Lin, L. C., Hung, S. C., Chi, C. W., & Tsai, T. H. (2007). Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. Journal of Pharmaceutical and Biomedical Analysis, 45, 635–641. https://doi.org/10.1016/j.jpba.2007.06.026.

    Article  Google Scholar 

  6. Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975–999. https://doi.org/10.2147/IJN.S68861.

    Article  Google Scholar 

  7. Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol, 44, 381–391. https://doi.org/10.3109/21691401.2014.953633.

    Article  Google Scholar 

  8. Qian, S., Li, C., & Zuo, Z. (2012). Pharmacokinetics and disposition of various drug loaded liposomes. Current Drug Metabolism, 13, 372–395. https://doi.org/10.2174/138920012800166562.

    Article  Google Scholar 

  9. Elmowafy, M., Viitala, T., Ibrahim, H. M., Abu-Elyazid, S. K., Samy, A., Kassem, A., & Yliperttula, M. (2013). Silymarin loaded liposomes for hepatic targeting: in vitro evaluation and HepG2 drug uptake. European Journal of Pharmaceutical Sciences, 50, 161–171. https://doi.org/10.1016/j.ejps.2013.06.012.

    Article  Google Scholar 

  10. El-Samaligy, M. S., Afifi, N. N., & Mahmoud, E. A. (2006). Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. International Journal of Pharmaceutics, 308, 140–148. https://doi.org/10.1016/j.ijpharm.2005.11.006.

    Article  Google Scholar 

  11. Ochi, M. M., Amoabediny, G., Rezayat, S. M., Akbarzadeh, A., & Ebrahimi, B. (2016). In vitro co-delivery evaluation of novel pegylated nano-liposomal herbal drugs of silibinin and glycyrrhizic acid (nano-phytosome) to hepatocellular carcinoma cells. Cell Journal, 18, 135–148. https://doi.org/10.22074/cellj.2016.4308.

    Google Scholar 

  12. Wang, M., Xie, T., Chang, Z., Wang, L., Xie, X., Kou, Y., Xu, H., & Gao, X. (2015). A new type of liquid silymarin proliposome containing bile salts: its preparation and improved hepatoprotective effects. PLoS One, 10, e0143625. https://doi.org/10.1371/journal.pone.0143625.

    Article  Google Scholar 

  13. Dube, D., Khatri, K., Goyal, A. K., Mishra, N., & Vyas, S. P. (2010). Preparation and evaluation of galactosylated vesicular carrier for hepatic targeting of silibinin. Drug Development and Industrial Pharmacy, 36, 547–555. https://doi.org/10.3109/03639040903325560.

    Article  Google Scholar 

  14. Maheshwari, H., Agarwal, R., Patil, C., & Katare, O. P. (2003). Preparation and pharmacological evaluation of silibinin liposomes. Arzneimittel-Forschung, 53, 420–427. https://doi.org/10.1055/s-0031-1297130.

    Google Scholar 

  15. Kumar, N., Rai, A., Reddy, N. D., Raj, P. V., Jain, P., Deshpande, P., Mathew, G., Kutty, N. G., Udupa, N., & Rao, C. M. (2014). Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacological Reports, 66, 788–798. https://doi.org/10.1016/j.pharep.2014.04.007.

    Article  Google Scholar 

  16. Jillavenkatesa, A., Dapkunas, S. J., & Lum, L.-S. H. (2001). Particle size characterization. Washington: National Institute of Standards and Technology.

    Google Scholar 

  17. Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28, 56–63.

    Article  Google Scholar 

  18. Lubran, M. M. (1978). The measurement of total serum proteins by the Biuret method. Annals of Clinical and Laboratory Science, 8, 106–110.

    Google Scholar 

  19. Szoka, F., & Papahadjopoulos, D. (1978). Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Nat Acad Sci USA, 75, 4194–4198. https://doi.org/10.1073/pnas.75.9.4194.

    Article  Google Scholar 

  20. Jaeschke, H., Gores, G. J., Cederbaum, A. I., Hinson, J. A., Pessayre, D., & Lemasters, J. J. (2002). Mechanisms of hepatotoxicity. Toxicological Sciences, 65(2), 166–176. https://doi.org/10.1093/toxsci/65.2.166.

    Article  Google Scholar 

  21. Ben-Shachar, R., Chen, Y., Luo, S., Hartman, C., Reed, M., & Nijhout, H. F. (2012). The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model. Theoretical Biology & Medical Modelling, 9, 55. https://doi.org/10.1186/1742-4682-9-55.

    Article  Google Scholar 

  22. Kamiyama, T., Sato, C., Liu, J., Tajiri, K., Miyakawa, H., & Marumo, F. (1993). Role of lipid peroxidation in acetaminophen-induced hepatotoxicity: comparison with carbon tetrachloride. Toxicology Letters, 66(1), 7–12.

    Article  Google Scholar 

  23. Baer-Dubowska, W., Szaefer, H., & Krajka-Kuzniak, V. (1998). Inhibition of murine hepatic cytochrome P450 activities by natural and synthetic phenolic compounds. Xenobiotica, 28(8), 735–743.

    Article  Google Scholar 

  24. Surai, P. F. (2015). Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants (Basel), 4(1), 204–247. https://doi.org/10.3390/antiox4010204.

    Article  Google Scholar 

  25. Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: entering the mainstream. Science, 303(5665), 1818–1822. https://doi.org/10.1126/science.1095833.

    Article  Google Scholar 

Download references

Acknowledgements

The work is performed according to the Russian Government Program of Competitive Growth of I.M. Sechenov First Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya B. Feldman.

Ethics declarations

All animal experiments were approved by the All-Russian Research Institute of Medicinal and Aromatic Plants Bioethics Committee.

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutsenko, S.V., Gromovykh, T.I., Krasnyuk, I.I. et al. Antihepatotoxic Activity of Liposomal Silibinin. BioNanoSci. 8, 581–586 (2018). https://doi.org/10.1007/s12668-018-0512-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0512-9

Keywords

Navigation