Skip to main content
Log in

Hydrothermal Synthesis of Cu-ZnO-/TiO2-Based Engineered Nanomaterials for the Efficient Removal of Organic Pollutants and Bacteria from Water

  • Published:
BioNanoScience Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Water pollution is responsible for the majority of deaths over the globe. Numerous photocatalysts were developed for the removal of pollutants from aquatic systems. The present work is a step ahead in the development of the water purification system. For the advancement in the removal efficiency of the photocatalyst, Cu-ZnO/TiO2 nanocomposites have been synthesized with the hydrothermal method. The photocatalytic performance of the developed system was tested on two organic dyes, i.e., methyl orange and rhodamine B. The Cu-ZnO/TiO2 nanocomposite exhibited more than tenfold increase in the degradation efficiency for organic dyes, when compared with pristine ZnO and TiO2. Likewise, the nanocomposite degraded 99% of bacterial colonies and exhibited enhanced antibacterial activity against Escherichia coli and Staphylococcus aureus in visible light. We have also optimized the Cu-doping level for the maximum photocatalytic activity of Cu-ZnO/TiO2 nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li, L., Zhang, X., Zhang, W., Wang, L., Chen, X., & Gao, Y. (2014). Microwave-assisted synthesis of nanocomposite Ag/ZnO–TiO2 and photocatalytic degradation rhodamine B with different modes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 134–141.

    Article  Google Scholar 

  2. Ding, X., Zhao, K., & Zhang, L. (2014). Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions. Environmental Science & Technology, 48, 5823–5831.

    Article  Google Scholar 

  3. Selvamani, M., Krishnamoorthy, G., Ramadoss, M., Sivakumar, P. K., Settu, M., Ranganathan, S., & Vengidusamy, N. (2016). Ag@Ag8W4O16 nanoroasted rice beads with photocatalytic, antibacterial and anticancer activity. Materials Science and Engineering: C, 60, 109–118.

    Article  Google Scholar 

  4. Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., & Sun, J. (2015). Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Advances, 5, 14610–14630.

    Article  Google Scholar 

  5. Djurišić, A. B., Leung, Y. H., & Ng, A. M. C. (2014). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Materials Horizons, 1, 400–410.

    Article  Google Scholar 

  6. Ananpattarachai, J., Boonto, Y., & Kajitvichyanukul, P. (2016). Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria. Environmental Science and Pollution Research, 23, 4111–4119.

    Article  Google Scholar 

  7. Zhu, H., Jiang, R., Fu, Y., Guan, Y., Yao, J., Xiao, L., & Zeng, G. (2012). Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination, 286, 41–48.

    Article  Google Scholar 

  8. Liu, H., Dong, X., Liu, T., & Zhu, Z. (2015). In-situ fabrication of silver-modified TiO2 microspheres for enhanced visible light driven photocatalytic activities. Solar Energy Materials and Solar Cells, 132, 86–93.

    Article  Google Scholar 

  9. Tian, C., Zhang, Q., Wu, A., Jiang, M., Liang, Z., Jiang, B., & Fu, H. (2012). Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chemical Communications, 48, 2858–2860.

    Article  Google Scholar 

  10. Xu, X., Wang, J., Tian, J., Wang, X., Dai, J., & Liu, X. (2011). Hydrothermal and post-heat treatments of TiO2/ZnO composite powder and its photodegradation behavior on methyl orange. Ceramics International, 37, 2201–2206.

    Article  Google Scholar 

  11. Liao, Y., Xie, C., Liu, Y., Chen, H., Li, H., & Wu, J. (2012). Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite. Ceramics International, 38, 4437–4444.

    Article  Google Scholar 

  12. Chai, S., Zhao, G., Li, P., Lei, Y., Zhang, Y. N., & Li, D. (2011). Novel sieve-like SnO2/TiO2 nanotubes with integrated photoelectrocatalysis: fabrication and application for efficient toxicity elimination of nitrophenol wastewater. The Journal of Physical Chemistry C, 115, 18261–18269.

    Article  Google Scholar 

  13. Fujishima, M., Takatori, H., & Tada, H. (2011). Interfacial chemical bonding effect on the photocatalytic activity of TiO2–SiO2 nanocoupling systems. Journal of Colloid and Interface Science, 361, 628–631.

    Article  Google Scholar 

  14. Mu, J., Chen, B., Zhang, M., Guo, Z., Zhang, P., Zhang, Z., et al. (2011). Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber heteroarchitectures. ACS Applied Materials & Interfaces, 4, 424–430.

    Article  Google Scholar 

  15. Shrestha, K. M., Sorensen, C. M., & Klabunde, K. J. (2013). MgO–TiO2 mixed oxide nanoparticles: comparison of flame synthesis versus aerogel method; characterization, and photocatalytic activities. Journal of Materials Research, 28, 431–439.

    Article  Google Scholar 

  16. Qu, X., Xie, D., Gao, L., Cao, L., & Du, F. (2015). Synthesis and characterization of TiO2/WO3 composite nanotubes for photocatalytic applications. Journal of Materials Science, 50, 21–27.

    Article  Google Scholar 

  17. Ba-Abbad, M. M., Takriff, M. S., Benamor, A., & Mohammad, A. W. (2017). Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol–gel technique and their photocatalytic activity. Journal of Sol-Gel Science and Technology, 81, 880–893.

    Article  Google Scholar 

  18. Atabaev, T. S. (2015). Facile hydrothermal synthesis of flower-like hematite microstructure with high photocatalytic properties. Journal of Advanced Ceramics, 4, 61.

    Article  Google Scholar 

  19. Nuengmatcha, P., Chanthai, S., Mahachai, R., & Oh, W.-C. (2016). Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation. Dyes and Pigments, 134, 487–497.

    Article  Google Scholar 

  20. Jiang, G., Wang, R., Jin, H., Wang, Y., Sun, X., Wang, S., & Wang, T. (2011). Preparation of Cu2 O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts. Powder Technology, 212, 284–288.

    Article  Google Scholar 

  21. Li, Y., Chen, L., Guo, Y., Sun, X., & Wei, Y. (2012). Preparation and characterization of WO3/TiO2 hollow microsphere composites with catalytic activity in dark. Chemical Engineering Journal, 181, 734–739.

    Article  Google Scholar 

  22. Kumar, S. G., & Rao, K. K. (2017). Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO 2, WO 3 and ZnO). Applied Surface Science, 391, 124–148.

    Article  Google Scholar 

  23. Zhang, M., An, T., Liu, X., Hu, X., Sheng, G., & Fu, J. (2010). Preparation of a high-activity ZnO/TiO2 photocatalyst via homogeneous hydrolysis method with low temperature crystallization. Materials Letters, 64, 1883–1886.

    Article  Google Scholar 

  24. Di Paola, A., Garcıa-López, E., Ikeda, S., Marcı, G., Ohtani, B., & Palmisano, L. (2002). Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 75, 87–93.

    Article  Google Scholar 

  25. Arana, J., Dona-Rodrıguez, J., González-Dıaz, O., Rendon, E. T., Melián, J. H., Colon, G., et al. (2004). Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu. Journal of Molecular Catalysis A: Chemical, 215, 153–160.

    Article  Google Scholar 

  26. Tseng, I.-H., Wu, J. C., & Chou, H.-Y. (2004). Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis, 221, 432–440.

    Article  Google Scholar 

  27. Heciak, A., Morawski, A. W., Grzmil, B., & Mozia, S. (2013). Cu-modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C 1–C 3 hydrocarbons and hydrogen. Applied Catalysis B: Environmental, 140, 108–114.

    Article  Google Scholar 

  28. Mary Jacob, N., Madras, G., Kottam, N., & Thomas, T. (2014). Multivalent Cu-doped ZnO nanoparticles with full solar spectrum absorbance and enhanced photoactivity. Industrial & Engineering Chemistry Research, 53, 5895–5904.

    Article  Google Scholar 

  29. Chun, H., Yuchao, T., & Hongxiao, T. (2004). Characterization and photocatalytic activity of transition-metal-supported surface bond-conjugated TiO2/SiO2. Catalysis Today, 90, 325–330.

    Article  Google Scholar 

  30. Nogawa, T., Isobe, T., Matsushita, S., & Nakajima, A. (2012). Preparation and visible-light photocatalytic activity of Au-and Cu-modified TiO2 powders. Materials Letters, 82, 174–177.

    Article  Google Scholar 

  31. Sorolla, M. G., Dalida, M. L., Khemthong, P., & Grisdanurak, N. (2012). Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light. Journal of Environmental Sciences, 24, 1125–1132.

    Article  Google Scholar 

  32. Khalid, N., Ahmed, E., Hong, Z., Ahmad, M., Zhang, Y., & Khalid, S. (2013). Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceramics International, 39, 7107–7113.

    Article  Google Scholar 

  33. Irie, H., Kamiya, K., Shibanuma, T., Miura, S., Tryk, D. A., Yokoyama, T., & Hashimoto, K. (2009). Visible light-sensitive Cu (II)-grafted TiO2 photocatalysts: activities and X-ray absorption fine structure analyses. The Journal of Physical Chemistry C, 113, 10761–10766.

    Article  Google Scholar 

  34. Yadav, H. M., Otari, S. V., Koli, V. B., Mali, S. S., Hong, C. K., Pawar, S. H., & Delekar, S. D. (2014). Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, 280, 32–38.

    Article  Google Scholar 

  35. Wu, H., Zhang, X., Geng, Z., Yin, Y., Hang, R., Huang, X., et al. (2014). Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO2 coatings. Applied Surface Science, 308, 43–49.

    Article  Google Scholar 

  36. Khanna, P., Singh, N., & Charan, S. (2007). Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent film in PVA. Materials Letters, 61, 4725–4730.

    Article  Google Scholar 

  37. Khaki, M. R. D., Sajjadi, B., Raman, A. A. A., Daud, W. M. A. W., & Shmshirband, S. (2016). Sensitivity analysis of the photoactivity of Cu–TiO2/ZnO during advanced oxidation reaction by Adaptive Neuro-Fuzzy Selection Technique. Measurement, 77, 155–174.

    Article  Google Scholar 

  38. Kuriakose, S., Satpati, B., & Mohapatra, S. (2015). Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Physical Chemistry Chemical Physics, 17, 25172–25181.

    Article  Google Scholar 

  39. Santara, B., Pal, B., & Giri, P. (2011). Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. Journal of Applied Physics, 110, 114322.

    Article  Google Scholar 

  40. Colis, S., Bouaine, A., Moubah, R., Schmerber, G., Ulhaq-Bouillet, C., Dinia, A., et al. (2010). Extrinsic ferromagnetism in epitaxial Co-doped CeO2 pulsed laser deposited films. Journal of Applied Physics, 108, 053910.

    Article  Google Scholar 

  41. Ohtani, B., Ogawa, Y., & Nishimoto, S. I. (1997). Photocatalytic activity of amorphous−anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. The Journal of Physical Chemistry B, 101, 3746–3752.

    Article  Google Scholar 

  42. Caballero, L., Whitehead, K., Allen, N., & Verran, J. (2009). Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. Journal of Photochemistry and Photobiology A: Chemistry, 202, 92–98.

    Article  Google Scholar 

  43. Blake, D. M., Maness, P.-C., Huang, Z., Wolfrum, E. J., Huang, J., & Jacoby, W. A. (1999). Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separation and Purification Methods, 28, 1–50.

    Article  Google Scholar 

  44. Tuli, H. S., Kashyap, D., Bedi, S. K., Kumar, P., Kumar, G., & Sandhu, S. S. (2015). Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sciences, 143, 71–79.

    Article  Google Scholar 

  45. Liou, J.-W., & Chang, H.-H. (2012). Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Archivum Immunologiae et Therapiae Experimentalis, 60, 267–275.

    Article  Google Scholar 

  46. Logothetidis, S., Laskarakis, A., Kassavetis, S., Lousinian, S., Gravalidis, C., & Kiriakidis, G. (2008). Optical and structural properties of ZnO for transparent electronics. Thin Solid Films, 516, 1345–1349.

    Article  Google Scholar 

  47. Li, Y., Xie, W., Hu, X., Shen, G., Zhou, X., Xiang, Y., et al. (2009). Comparison of dye photodegradation and its coupling with light-to-electricity conversion over TiO2 and ZnO. Langmuir, 26, 591–597.

    Article  Google Scholar 

  48. Liao, S., Donggen, H., Yu, D., Su, Y., & Yuan, G. (2004). Preparation and characterization of ZnO/TiO2, (SO4)2−/ZnO/TiO2 photocatalyst and their photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 168, 7–13.

    Article  Google Scholar 

  49. Chiang, K., Amal, R., & Tran, T. (2002). Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Advances in Environmental Research, 6, 471–485.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pardeep Kumar.

Electronic Supplementary Material

ESM 1

(DOC 5752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kundu, V.S., Kumar, S. et al. Hydrothermal Synthesis of Cu-ZnO-/TiO2-Based Engineered Nanomaterials for the Efficient Removal of Organic Pollutants and Bacteria from Water. BioNanoSci. 7, 574–582 (2017). https://doi.org/10.1007/s12668-017-0452-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0452-9

Keywords

Navigation