Skip to main content
Log in

Surface Structure and Adsorption Characteristics of COOH-Functionalized Multi-Wall Carbon Nanotubes

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Carbon-based nanomaterials with functionalized surface are widely used in water treatment, agriculture, hydrogen storage, and biology. The current study deals with characterization of engineered multi-wall carbon nanotubes (MWCNT) prior and after chemical modification in nitric acid for 1 and 2 h. It was shown that MWCNT surface area increased from 70 m2/g (pristine material) to 149 m2/g after 2 h modification, and the surface became hydrophilic. According to back-titration method the functional surface group concentration increased almost three times after 2 h treatment compared to 1 h modification. The results of thermogravimetric analysis (TGA) have shown good correspondence with functional COOH-group concentration of samples. Total pore volume and specific surface area were calculated using non-local density functional theory (NLDFT) and Brunaeur-Emmet-Teller (BET) models. Studied functionalized MWCNTs form stable water dispersions and show great potential for biological agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Canas, J. E., Long, M., Nations, S., Vadan, R., Dai, L., & Luo, M. (2008). Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27, 1922–1931. doi:10.1897/08-117.1.

    Article  Google Scholar 

  2. Yang, W., Thordarson, P., Gooding, J. J., Ringer, S. P., Filip, B. F. (2007). Carbon nanotubes for biological and biomedical applications. Nanotechnology, 41, 412001. doi: 10.1088/0957-4484/18/41/412001.

  3. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. doi:10.1038/354056a0.

    Article  Google Scholar 

  4. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., & Heben, M. J. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386, 377–379. doi:10.1038/386377a0.

    Article  Google Scholar 

  5. Hynek, S., Fuller, W., & Bentley, J. (1997). Hydrogen storage by carbon sorption. International J. Hydrogen Energy, 22, 601–610. doi:10.1016/S0360-3199(96)00185-1.

    Article  Google Scholar 

  6. Dresselhaus, M., Williams, K. A., & Eklund, P. C. (1999). Hydrogen adsorption on carbon materials. MRS Bulletin, 24, 45–50. doi:10.1557/S0883769400053458.

    Article  Google Scholar 

  7. Wang, Q., & Johnson, J. K. (1998). Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J. Chemical Physics, 110, 577–586. doi:10.1063/1.478114.

    Article  Google Scholar 

  8. Darkrim, F., & Levesque, D. (1998). Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J. Chemical Physics, 109, 4981–4984. doi:10.1063/1.477109.

    Article  Google Scholar 

  9. Gu, C., Gao, G. H., & Yu, Y. X. (2004). Density functional study of the adsorption and separation of hydrogen in single-walled carbon nanotube. International J. Hydrogen Energy, 29, 465–473. doi:10.1016/S0360-3199(03)00131-9.

    Article  Google Scholar 

  10. Darkrim, F. L., Malbrunot, P., & Tartaglia, G. P. (2002). Review of hydrogen storage by adsorption in carbon nanotubes. International J. Hydrogen Energy, 27, 193–202. doi:10.1016/S0360-3199(01)00103-3.

    Article  Google Scholar 

  11. Meregalli, V., & Parrinello, M. (2001). Review of theoretical calculations of hydrogen storage in carbon-based materials. Applied Physics A: Materials Science & Processing, 72, 143–146. doi:10.1007/s003390100789.

    Article  Google Scholar 

  12. Ye, Y., Ahn, C. C., Witham, C., Fultz, B., Liu, J., Rinzler, A. G., Colbert, D., Smith, K. A., & Smalley, R. E. (1999). Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters, 74, 2307–2310. doi:10.1063/1.123833.

    Article  Google Scholar 

  13. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., & Dresselhaus, M. S. (1999). Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127–1129. doi:10.1126/science.286.5442.1127.

    Article  Google Scholar 

  14. Ioannatos, G. E., & Verykios, X. E. (2010). H2 storage on single- and multi-walled carbon nanotubes. International J. Hydrogen Energy, 35, 622–628. doi:10.1016/j.ijhydene.2009.11.029.

    Article  Google Scholar 

  15. Kuznetsova, A., Mawhinney, D. B., Naumenko, V., Yates Jr., J. T., Liu, J., & Smalley, R. (2000). Enhancement of adsorption inside of single-walled nanotubes: Opening the entry ports. Chemical Physics Letters, 321, 292–296. doi:10.1016/S0009-2614(00)00341-9.

    Article  Google Scholar 

  16. Cheng, H., Cooper, A. C., Pez, G. P., Kostov, M. K., Piotrowski, P., & Stuart, S. J. (2005). Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J. Physical Chemistry B, 109, 3780. doi:10.1021/jp045358m.

    Article  Google Scholar 

  17. Miyawaki, J., & Kaneko, K. (2001). Pore width dependence of the temperature change of the confined methane density in slit-shaped micropores. Chemical Physics Letters, 337, 243–247. doi:10.1016/S0009-2614(01)00225-1.

    Article  Google Scholar 

  18. Salem, M. M. K., Braeuer, P., Szombathely, M., Heuchel, M., Harting, P., Quitzsch, K., & Jaroniec, M. (1998). Thermodynamics of high-pressure adsorption of argon, nitrogen and methane on microporous adsorbents. Langmuir, 14, 3376–3389. doi:10.1021/la970119u.

    Article  Google Scholar 

  19. Saleh, T. A. (2016). Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): From surface properties to sorption mechanism. Desalination and Water Treatment, 57, 10730–10744. doi:10.1080/19443994.2015.1036784.

    Article  Google Scholar 

  20. Saleh, T. A. (2015). Mercury sorption by silica/carbon nanotubes and silica/activated carbon: A comparison study. Journal of Water Supply: Research and Technology-AQUA, 64, 892–903. doi:10.2166/aqua.2015.050.

    Article  Google Scholar 

  21. Saleh, T. A. (2015). Isotherm, kinetic, and thermodynamic studies on hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes. Environmental Science and Pollution Research, 22, 16721–16731. doi:10.1007/s11356-015-4866-z.

    Article  Google Scholar 

  22. Saleh, T. A. (2011). The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Applied Surface Science, 257, 7746–7751. doi:10.1016/j.apsusc.2011.04.020.

    Article  Google Scholar 

  23. Sani, H. A., Ahmada, M. B., & Saleh, T. A. (2016). Synthesis of zinc oxide/talc nanocomposite for enhanced lead adsorption from aqueous solutions. RSC Advances, 6, 108819–108827. doi:10.1039/C6RA24615J.

    Article  Google Scholar 

  24. Saleh, T. A., Al-Shalalfeh, M. M., & Al-Saadi, A. A. (2016). Graphene dendrimer-stabilized silver nanoparticles for detection of methimazole using surface-enhanced Raman scattering with computational assignment. Scientific Reports, 6, 32185. doi:10.1038/srep32185.

    Article  Google Scholar 

  25. Danmaliki, G. I., & Saleh, T. A. (2017). Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon. Chemical Engineering Journal, 307, 914–927. doi:10.1016/j.cej.2016.08.143.

    Article  Google Scholar 

  26. Saleh, T. A., Sarı, A., & Tuzen, M. (2017). Effective adsorption of antimony (III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chemical Engineering Journal, 307, 230–2382. doi:10.1016/j.cej.2016.08.070.

    Article  Google Scholar 

  27. Zare, F., Ghaedi, M., Daneshfar, A., Agarwal, S., Tyagi, I., Saleh, T. A., & Gupta, V. K. (2016). Efficient removal of radioactive uranium from solvent phase using AgOH–MWCNTs nanoparticles: Kinetic and thermodynamic study. Chemical Engineering Journal, 273, 296–306. doi:10.1016/j.cej.2015.03.002.

    Article  Google Scholar 

  28. Muratov, D. S., & Gromov, S. (2017). Evaluating hydrogen uptake for two types of multi-wall carbon nanotubes from nitrogen adsorption/desorption data. Nano Hybrids and Composites, 13, 341–347. doi:10.4028/www.scientific.net/NHC.13.341.

    Article  Google Scholar 

  29. Le, V. T., Ngo, C. L., Le, Q. T., Ngo, T. T., Nguyen, D. N., & Vu, M. T. (2013). Surface modification and functionalization of carbon nanotube with some organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 035017(5pp). doi:10.1088/2043-6262/4/3/035017.

    Google Scholar 

  30. Ahmeda, D. S., Haiderb, A. J., & Mohammad, M. R. (2013). Comparesion of functionalization of multi walled carbon nanotubes treated by oil olive and nitric acid and their characterization. Energy Procedia, 36, 1111–1118. doi:10.1016/j.egypro.2013.07.126.

    Article  Google Scholar 

  31. Athmouni, N., Mighri, F., & Elkoun, S. (2016). Effect of unfunctionalized and HNO3-functionalized MWCNT on the mechanical and electrical performances of PEMFC bipolar plates. Journal of Applied Polymer Science, 133, 43624–43631. doi:10.1002/app.43624.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Federal Target Program “Investigations and developments along priority avenues for the advancement of science and technology of Russia in the 2014–2020 period” (grant agreement no. 14.575.21.0087 dated 21.10.2014, Project ID-RFMEFI57514X0087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Gromov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratov, D.S., Stolyarov, R.A. & Gromov, S.V. Surface Structure and Adsorption Characteristics of COOH-Functionalized Multi-Wall Carbon Nanotubes. BioNanoSci. 8, 668–674 (2018). https://doi.org/10.1007/s12668-017-0442-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0442-y

Keywords

Navigation