Skip to main content

Advertisement

Log in

A robust least square approach for forecasting models: an application to Brazil’s natural gas demand

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The robust least square method has been introduced in the literature as a new parameter estimation technique to deal with the presence of data uncertainties. In this paper we propose to use the robust least square method combined with log-linear Cobb–Douglas model as an alternative for developing forecast models. We first extend the robust least square method to the case which allows uncertainties only in some columns of the data matrix as well as to include weighting matrices on the past data observations and on the uncertainties. Afterwards we compare the robust and ordinary least square methods for the yearly estimate for the natural gas demand in Brazil, considering the total demand as well as the industrial and power sectors demand. Regarding the power sector case, a further contribution of the paper is to analyze the impact of the reservoirs’ levels over the demand of natural gas by thermoelectric power plants in an energy mix dominated by hydropower. Although both methods, the robust and the ordinary least square, presented similar results, the robust approach gave a slightly better result and presented reasonable long-run elasticities related to the demand of natural in the country, indicating that can it be a good alternative to overcome the difficulties associated with the use of short time series and unreliable data on the forecast of energy consumption in emerging markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, F.G., Shachmurove, Y.: Modeling and forecasting energy consumption in China: implications for Chinese energy demand and imports in 2020. Energy Econ. 30(3), 1263–1278 (2008)

    Article  Google Scholar 

  2. Almeida, E.F., Colomer, M.F.: Industria do Gás Natural—Fundamentos Técnicos e Econômicos. Ed. Synergia, Rio de Janeiro, Brazil (2013)

  3. ANP Agência Nacional de Petróleo, Gás e Biocombustíveis. Evolução da Industria Brasileira de Gás Natural: Aspectos Técnicos, Econômicos e Jurídicos. http://www.anp.gov.br/wwwanp/?dw=32427 (2009)

  4. Barak, S., Sadegh, S.S.: Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm. Int. J. Electr. Power Energy Syst. 82, 92–104 (2016)

    Article  Google Scholar 

  5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  6. Cabral, R., Parente, V.: Demanda por gás natural no Brasil: um estudo sobre as elasticidades preço e renda de longo prazo do segmento industrial e estimativa para o período de 2008–2012, usando um modelo VEC. In: Proceedings of the Rio Oil and Gas Expo and Conference 2008, pp. 1–8, Rio de Janeiro, Brazil (2008)

  7. Campos, A.F., da Silva, N.F., Pereira, M.G., Freitas, M.A.V.: A review of Brazilian natural gas industry: challenges and strategies. Renew. Sustain. Energy Rev. 75, 1207–1216 (2017)

    Article  Google Scholar 

  8. Chandrasekaran, S., Golub, G., Gu, M., Sayed, A.: Parameter estimation in the presence of bounded data uncertainties. SIAM J. Matrix Anal. Appl. 19(1), 235–252 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costa, O.L.V., Ribeiro, C.O., Rego, E.E., Stern, J.M., Parente, V., Kileber, S.: Robust portfolio optimization for electricity planning: an application based on the Brazilian electricity mix. Energy Econ. 64, 158–169 (2017)

    Article  Google Scholar 

  10. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, London (1994)

    Book  MATH  Google Scholar 

  11. El Ghaoui, L., Lebret, H.: Robust least squares and applications. In: Proceedings of 35th IEEE Conference on Decision and Control, vol. 1. Kobe, Japan, pp. 249–254

  12. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51, 543–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eldar, Y.C., Ben-Tal, A., Nemirovski, A.: Robust mean-squared error estimation in the presence of model uncertainties. IEEE Trans. Signal Process. 53(1), 168–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Empresa de Planejamento Energético-EPE. Plano Nacional de Energia 2050. http://www.epe.gov.br (2007)

  16. Energy Initiative MIT EI Massachusetts Institute of Technology. The future of natural gas: an interdisciplinary MIT study. http://energy.mit.edu/research/future-natural-gas/ (2011)

  17. Erdogdu, E.: Natural gas demand in Turkey. Appl. Energy 87(1), 211–219 (2010)

    Article  Google Scholar 

  18. Fabozzi, F.J., Kolm, P.N., Pachamanova, D.A., Focardi, S.M.: Robust portfolio optimization. J. Portf. Manag. 33, 40–48 (2007a)

    Article  Google Scholar 

  19. Fabozzi, F.J., Kolm, P.N., Pachamanova, D.A., Focardi, S.M.: Robust Portfolio Optimization and Management. Wiley Finance, Hoboken (2007b)

    Google Scholar 

  20. Ferraro, M.C., Hallack, M.: The development of the natural gas transportation network in Brazil: recent changes to the gas law and its role in co-ordinating new investments. Energy Policy 50, 601–612 (2012)

    Article  Google Scholar 

  21. Gorucu, F.B.: Artificial neural network modeling for forecasting gas consumption. Energy Sour 26(3), 299–307 (2004)

    Article  Google Scholar 

  22. Hong, W.-C.: Intelligent Energy Demand Forecasting. Springer, London (2013)

    Book  Google Scholar 

  23. International Energy Agency-IEA. Statistics. http://www.iea.org/statistics (2017)

  24. Işik, C.: Natural gas consumption and economic growth in Turkey: a bound test approach. Energy Syst. 1(4), 441–456 (2010)

    Article  Google Scholar 

  25. Khan, M.A.: Modelling and forecasting the demand for natural gas in Pakistan. Renew. Sustain. Energy Rev. 49, 1145–1159 (2015)

    Article  Google Scholar 

  26. Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 37(1), 479–489 (2010)

    Article  MATH  Google Scholar 

  27. Kim, J.H., Kim, W.C., Fabozzi, F.J.: Recent developments in robust portfolios with a worst-case approach. J Optim Theory Appl 161, 103–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ministério de Minas e Energia (MME) and Empresa de Pesquisa Energética (EPE). Brazilian Energy Balance. http://www.epe.gov.br/en/publications/publications/brazilian-energy-balance/brazilian-energy-balance-2016 (2016)

  30. Ministério de Minas e Energia (MME) and Empresa de Pesquisa Energética (EPE). Plano Decenal de Energia 2026. http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Plano-Decenal-de-Expansao-de-Energia-2026 (2017)

  31. Ministério de Minas e Energia-MME. Boletim Mensal de Acompanhamento da Indústria de Gás Natural. http://www.mme.gov.br/web/guest/secretarias/petroleo-gas-natural-e-combustiveis-renovaveis/publicacoes/boletim-mensal-de-acompanhamento-da-industria-de-gas-natural (2016)

  32. Moutinho dos Santos, E, Fagá, M.T.W., Barufi, C.B., Polallion, P.L.: Natural gas—the construction of a new civilization. Estudos Avançados 59(21), 67–90 (2007). https://www.revistas.usp.br/eav/article/view/10207/11805

  33. Operador Nacional do Sistema Elétrico. ONS-Histórico da Operação. http://www.ons.org.br/paginas/resultados-da-operacao/historico-da-operacao (2018)

  34. Rosa, L.P., Silva, N.F., Pereira, M.G., Losekann, L.D.: The evolution of Brazilian electricity market. In: Sioshansi, F.P. (ed.) Evolution of Global Electricity Markets: New paradigms. New Challenges, New Approaches. chapter 15, pp. 435–460. Elsevier, New York (2013)

    Chapter  Google Scholar 

  35. Sayed, A.H., Nascimento, V.H., Chandrasekaran, S.: Estimation and control with bounded data uncertainties. Linear Algebra Appl 284(1), 259–306 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Soldo, B.: Forecasting natural gas consumption. Appl. Energy 92, 26–37 (2012)

    Article  Google Scholar 

  37. Szoplik, J.: Forecasting of natural gas consumption with artificial neural networks. Energy 85, 208–220 (2015)

    Article  Google Scholar 

  38. Vanli, N.D., Donmez, M.A., Kozat, S.S.: Robust least squares methods under bounded data uncertainties. Digital Signal Process. 36, 82–92 (2015)

    Article  MathSciNet  Google Scholar 

  39. Wadud, Z., Dey, H.S., Kabir, M.A., Khan, S.I.: Modeling and forecasting natural gas demand in Bangladesh. Energy Policy 39(11), 7372–7380 (2011)

    Article  Google Scholar 

  40. Yi-Chung, H.: Electricity consumption prediction using a neural-network-based grey forecasting approach. J. Oper. Res. Soc. 68(10), 1259–1264 (2017)

    Article  Google Scholar 

  41. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  MATH  Google Scholar 

  42. Zhang, G.P., Qi, M.: Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 160(2), 501–514 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswaldo L. V. Costa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by Project Fapesp/Shell Research Centre for Gas Innovation, Grant 2014/50279-4. The first, second, third and fourth authors received financial support from CNPq (Brazilian National Research Council), Grants 304091/2014-6, 307126/2018-8, 304670/2014-6 and 303865/2017-2 respectively.

Appendix

Appendix

1.1 Second-order cone programming (SOCP)

A SCOP is defined as follows:

$$\begin{aligned}&\min _{\in \mathbb {R}^n} \mathbf c ^\prime \mathbf x \nonumber \\&\text {subject to}\,\,\,\,\Vert \mathbf A _i\mathbf x +\mathbf b _i\Vert \le \mathbf e _i^\prime \mathbf x + \mathbf d _i, i=1,\ldots ,\kappa \end{aligned}$$
(16)

where \(\mathbf c ,\mathbf e _i\in \mathbb {R}^n\), \(\mathbf A _i \in \mathbb {R}^{n_i\times n}\) and \(\mathbf d _i\in \mathbb {R}\). As pointed out in [28] SOCP includes several important standard classes of convex optimization problems, such as linear programming (LP), quadratic programming (QP) and quadratically constrained quadratic program (QCQP). Several very efficient primal-dual interior-point methods for SOCP have been developed in the last few years, which makes this class of problem very attractive from the numerical point of view.

1.2 Proof of Theorem 1

The goal of this subsection is to show (5), following the same approach as in Theorem 3.1 in [12]. First we notice that

$$\begin{aligned} \Vert \mathbf{W }\big (\mathbf A _1 \mathbf x _1 + (\mathbf A _2+\varDelta \mathbf A _2) \mathbf x _2&- (\mathbf b +\varDelta \mathbf b )\big )\Vert = \Vert \mathbf{W }(\mathbf{Ax } - \mathbf b )+ \mathbf{W } \begin{bmatrix} \varDelta \mathbf A _2&\varDelta \mathbf b \end{bmatrix} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert \nonumber \\&\le \Vert \mathbf{W }(\mathbf{Ax } - \mathbf b )\Vert + \Vert \mathbf{W } \begin{bmatrix} \varDelta \mathbf A _2&\varDelta \mathbf b \end{bmatrix} {\varvec{\varGamma }^{-1}}{\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert \nonumber \\&\le \Vert \mathbf{W }(\mathbf{Ax } - \mathbf b )\Vert + \Vert \mathbf{W } \begin{bmatrix} \varDelta \mathbf A _2&\varDelta \mathbf b \end{bmatrix} {\varvec{\varGamma }^{-1}} \Vert \Vert {\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert \nonumber \\&\le \Vert \mathbf{W }(\mathbf{Ax } - \mathbf b )\Vert + \rho \Vert {\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert \end{aligned}$$
(17)

since \(\Vert \mathbf{W } [ \varDelta \mathbf A _2 \,\,\varDelta \mathbf b ] {\varvec{\varGamma }^{-1}} \Vert \le \rho \). Define now \(\begin{bmatrix} \varDelta \mathbf A _2^*&\varDelta \mathbf b ^* \end{bmatrix}\) as

$$\begin{aligned} \begin{bmatrix} \varDelta \mathbf A _2^*&\varDelta \mathbf b ^* \end{bmatrix} = \rho \mathbf v \frac{1}{\Vert {\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert }\begin{bmatrix}{} \mathbf x _2^\prime&-\mathbf 1 \end{bmatrix} \varvec{\varGamma } \end{aligned}$$
(18)

where \(\mathbf v \) is defined, for the case in which \(\mathbf{Ax } \ne \mathbf b \), as

$$\begin{aligned} \mathbf v = \frac{1}{\Vert \mathbf{W }(\mathbf{Ax }-\mathbf b )\Vert } (\mathbf{Ax }-\mathbf b ) \end{aligned}$$
(19)

and for the case in which \(\mathbf{Ax } = \mathbf b \), as \(\mathbf v = \mathbf e \) where \(\mathbf e \) is a vector such that \(\Vert \mathbf{W }{} \mathbf e \Vert =1\). From (18) we have that

$$\begin{aligned} \Vert \mathbf{W }\begin{bmatrix} \varDelta \mathbf A _2^*&\varDelta \mathbf b ^* \end{bmatrix} {\varvec{\varGamma }^{-1}} \Vert = \rho \Vert \mathbf{W }{} \mathbf v \Vert \frac{1}{\Vert {\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert }\Vert \begin{bmatrix}{} \mathbf x _2^\prime&-\mathbf 1 \end{bmatrix} {\varvec{\varGamma }}\Vert = \rho \end{aligned}$$

since \(\Vert \mathbf{W }{} \mathbf v \Vert =1\). Moreover, for the case in which \(\mathbf{Ax } \ne \mathbf b \), we have from (18), (19) that

$$\begin{aligned}&\Vert \mathbf{W }(\mathbf{Ax } - \mathbf b )+ \mathbf{W } \begin{bmatrix} \varDelta \mathbf A _2^*&\varDelta \mathbf b ^* \end{bmatrix} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix}\Vert \nonumber \\&\quad =\Vert \mathbf{W }(\mathbf{Ax } - \mathbf b )+ \rho \frac{1}{\Vert \mathbf{W }(\mathbf{Ax }-\mathbf b )\Vert } \mathbf{W }(\mathbf{Ax }-\mathbf b ) \frac{1}{\Vert {\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert }\begin{bmatrix}{} \mathbf x _2^\prime&-\mathbf 1 \end{bmatrix} \varGamma \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert \nonumber \\&\quad =\Vert \mathbf{W }(\mathbf{Ax } - \mathbf b )\Vert + \rho \Vert {\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert \end{aligned}$$
(20)

and similarly for the case in which \(\mathbf{Ax }=\mathbf b \) we have that

$$\begin{aligned} \Vert \mathbf{W }(\mathbf{Ax } - \mathbf b )+ \mathbf{W } \begin{bmatrix} \varDelta \mathbf A _2^*&\varDelta \mathbf b ^* \end{bmatrix} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix}\Vert&= \Vert \rho \mathbf{W } \mathbf e \frac{1}{\Vert {\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert }\begin{bmatrix}{} \mathbf x _2^\prime&-\mathbf 1 \end{bmatrix} \varvec{\varGamma } \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert \nonumber \\&=\rho \Vert \mathbf{W } \mathbf e \Vert \Vert {\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert = \rho \Vert {\varvec{\varGamma }} \begin{bmatrix}{} \mathbf x _2\\ -\mathbf 1 \end{bmatrix} \Vert . \end{aligned}$$
(21)

By combining (17), (20) and (21) we obtain (5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, O.L.V., de Oliveira Ribeiro, C., Ho, L.L. et al. A robust least square approach for forecasting models: an application to Brazil’s natural gas demand. Energy Syst 11, 1111–1135 (2020). https://doi.org/10.1007/s12667-019-00351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-019-00351-1

Keywords

Navigation