Skip to main content
Log in

Dry Sliding Wear Behaviour of Epoxy/Biochar Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Traditional method of production of carbon black is very expensive. Recent focus of researchers worldwide is to produce carbon black from agricultural waste products and from some lignocellulosic biomass that is rich in organic materials. In this present study, carbon black is prepared from a biowaste material known as wood apple shell and utilised as reinforcement material in epoxy with filler loading of 5,10,15, and 20 weight percent. Carbon blacks were produced with different carbonisation temperature (400,600 and 800 ℃). Dry sliding wear behaviour of the developed composites was studied. The wear studies with different load and sliding velocities indicate that 10 weight percent of filler loading with carbon black produced with 800 ℃ gives least material removal rate. Surface of wear out composites was studied with FESEM and the dominating wear mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pierson H O, Handbook of Graphite, diamond, and fullerenes: Properties, Processing and Applications, 1st Edition, 31st December (1994).

  2. Burchell T D, Carbon materials for advanced technologies, 1st Edition, 22nd July (1999).

  3. He Y & Zhang G L, Environmental Pollution, 157 (2009) 2684

    Article  CAS  Google Scholar 

  4. Bécu L, Pauline G, Annie C & Sébastien M, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 263 173 (2005).

    Article  Google Scholar 

  5. Li W, Yang K, Peng J, Zhang L, Guo S & Xia H, Ind Crops Prod, 28 192 (2008).

    Google Scholar 

  6. Abdul K, Firoozian P, Bakare I O, Akil H M & Noor A M, Mater Des, 31 3419 (2010).

    Article  Google Scholar 

  7. Ojha S, Acharya S K & Raghavendra G, J Appl Polym Sci, 132 41211 (2015).

    Article  Google Scholar 

  8. Parshetti G K, Kent H S & Balasubramanian R, Bioresour Technol, 135 683 (2013).

    Article  CAS  Google Scholar 

  9. Alagumuthu G & Rajan M, Chem Eng J, 158 451 (2010).

    Article  CAS  Google Scholar 

  10. Baccar R, Bouzid J, Feki M & Montiel A, J Hazard Mater, 162 1522 (2009).

    Article  CAS  Google Scholar 

  11. Luheng W, Tianhuai D & Peng W, Carbon, 47 3151 (2009).

    Article  Google Scholar 

  12. Castro J B, Bonelli P R, Cerrella E G & Cukierman A L, Ind Eng Chem Res, 39 4166 (2000)

    Article  CAS  Google Scholar 

  13. Demirbas E, Dizge N, Sulak M T & Kobya M, Chem Eng J, 148 480 (2009).

    Article  CAS  Google Scholar 

  14. Xie X, Goodell B, Qian Y, Peterson M & Jellison J, Holzforschung, 62 591 (2008).

    Article  CAS  Google Scholar 

  15. Lehmann J and Joseph S, Biochar for environmental management: Science and technology, 1st Edition, 20th February (2015).

  16. Das O, Sarmah A K & Bhattacharyya D, Waste Manag, 38 132 (2015).

    Article  CAS  Google Scholar 

  17. Ahmetli G, Kocaman S, Ozaytekin I & Bozkurt P, Polym Compos, 34 500 (2013).

    Article  CAS  Google Scholar 

  18. Peterson S C, J Elastomers Plast, 45 487 (2013).

    Article  CAS  Google Scholar 

  19. Peterson SC & Kim S, J Polymers and the Environment, 28 317 (2020).

    Article  CAS  Google Scholar 

  20. Nan N, DeVallance D B, Xie X & Wang J, J Compos Mater, 50 1161 (2016).

    Article  CAS  Google Scholar 

  21. Ojha S, Acharya S K & Gujjala R, Procedia Mater Sci, 6 468 (2014)

    Article  CAS  Google Scholar 

  22. Samantrai S P, Raghavendra G, & Acharya S K, Proc. Inst Mech Eng Part J J Eng Tribol, 228 463 (2014).

    Article  CAS  Google Scholar 

  23. Prakash M O, Raghavendra G, Ojha S, Wear, 466 203523 (2021).

    Article  Google Scholar 

  24. Ojha S, Acharya S K & Raghavendra G, Proc Inst Mech Eng Part E J Process Mech Eng, 230 263 (2016).

    CAS  Google Scholar 

  25. Zahavi J & Schmitt G F, Wear, 71 179 (1981).

    Article  Google Scholar 

  26. Ikram S, Das O & Bhattacharyya D, Compos Part A Appl Sci Manuf, 91 177 (2016).

    Article  CAS  Google Scholar 

  27. Bajpai P K, Singh I & Madaan J, Proc Inst Mech Eng Part J J Eng Tribol, 297 829 (2013).

    CAS  Google Scholar 

  28. Chauhan S R, Kumar A, Singh I & Kumar P, J Miner Mater Charact Eng, 09 365 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Acharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S., Prakash, V., Majhi, S. et al. Dry Sliding Wear Behaviour of Epoxy/Biochar Composites. Trans Indian Inst Met 75, 2355–2365 (2022). https://doi.org/10.1007/s12666-022-02617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02617-2

Keywords

Navigation