Skip to main content
Log in

Dynamic Recrystallization and Dynamic Precipitation in AA6061 Aluminum Alloy During Friction Stir Welding

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This paper investigated the mode of recrystallization in the nugget zone (NZ) of friction stir welding (FSW) joint of AA6061-T6. By correlating grain orientation spread results, kernel average misorientation (KAM) results, misorientation maps of grain boundaries (GBs) and selected area diffraction patterns of precipitates systematically, we found that continuous dynamic recrystallization (CDRX) and geometric dynamic recrystallization (GDRX) both occurred. CDRX could be enhanced by decreasing feeding speed of FSW. The variation trend of fraction of low-angle grain boundaries in NZ indicated different contribution brought by CDRX and GDRX and also different combination form of heat input. KAM results can also act as indicator of the extent of dynamic recrystallization in the NZ of FSW, only under a constant feeding speed. The fine needle-shaped β'' precipitate disappeared in NZ and evolved to β' and equilibrium β-Mg2Si phase during FSW. Furthermore, the shape and orientation of β' or β phases could be changed by mutual interaction with dislocation movement, to different extent depended on CDRX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Ramesh P N, Suwas S, Kumar K S, Sinha P P and Ranganathan S 2012 Mater Sci Forum 702 315 doi: https://doi.org/10.4028/www.scientific.net/MSF.702-703.315

    Article  CAS  Google Scholar 

  2. Lopez-Pedrosa M, Wynne B P and Rainforth W M 2007 Mater Sci Forum 550 223 doi: https://doi.org/10.4028/www.scientific.net/MSF.550.223

    Article  CAS  Google Scholar 

  3. Hadadzadeh A, Mokdad F, Wells M A and Chen D L 2018 Mat Sci Eng A 709 285 doi: https://doi.org/10.1016/j.msea.2017.10.062

    Article  CAS  Google Scholar 

  4. Zhao K, Gao T, Yang H, Liu G, Sun Q, Wu C, Nie J and Liu X 2020 J Alloy Compd 820 153089 doi: https://doi.org/10.1016/j.jallcom.2019.153089

    Article  CAS  Google Scholar 

  5. Mishra R S and Ma Z Y, 2005 Mat Sci Eng R 50 1 doi: https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  6. Nandan R, DebRoy T and Bhadeshia H K D H 2008 Prog Mater Sci 53 980 doi: https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  CAS  Google Scholar 

  7. Chang C I, Du X H and Huang J C 2008 Scripta Mater 59 356 doi: https://doi.org/10.1016/j.scriptamat.2008.04.003

    Article  CAS  Google Scholar 

  8. Etter A L, Baudin T, Fredj N and Penelle R 2007 Mat Sci Eng A 445 94 doi: https://doi.org/10.1016/j.msea.2006.09.036

    Article  CAS  Google Scholar 

  9. Kumar P and Sharma S 2021 Trans Indian Inst Met 74 1943 doi: https://doi.org/10.1007/s12666-021-02255-0

    Article  CAS  Google Scholar 

  10. Vahdati M, Moradi M and Shamsborhan M 2020 Trans Indian Inst Met 73 2587 doi: https://doi.org/10.1007/s12666-020-02075-8

    Article  CAS  Google Scholar 

  11. Bisadi H, Rasaee S and Farahmand M 2014 Trans Indian Inst Met 67 989 doi: https://doi.org/10.1007/s12666-014-0421-8

    Article  Google Scholar 

  12. Thilagham K T and Muthukumaran S 2020 Trans Indian Inst Met 73 2415 doi: https://doi.org/10.1007/s12666-020-02063-y

    Article  CAS  Google Scholar 

  13. Subbaiah K, Geetha M, Govindaraju M and Rao S R K 2012 Trans Indian Inst Met 65 155 doi: https://doi.org/10.1007/s12666-011-0117-2

    Article  CAS  Google Scholar 

  14. Thilagham K T, Sunilkumar D and Muthukumaran S 2021 Trans Indian Inst Met 74 331 doi: https://doi.org/10.1007/s12666-020-02126-0

    Article  CAS  Google Scholar 

  15. Cheong S and Weiland H 2007 Mater Sci Forum 558 153 doi: https://doi.org/10.4028/www.scientific.net/MSF.558-559.153

    Article  Google Scholar 

  16. Jata K V and Semiatin S L 2000 Scripta Mater 43 743 doi: https://doi.org/10.1016/s1359-6462(00)00480-2

    Article  CAS  Google Scholar 

  17. Rhodes C G, Mahoney M W, Bingel W H, Spurling R A and Bampton C C 1997 Scripta Mater 36 69 doi: https://doi.org/10.1016/s1359-6462(96)00344-2

    Article  CAS  Google Scholar 

  18. Su J Q, Nelson T W, Mishra R and Mahoney M 2003 Acta Mater 51 713 doi: https://doi.org/10.1016/s1359-6454(02)00449-4

    Article  CAS  Google Scholar 

  19. Zuo J, Hou L, Shi J, Cui H, Zhuang L and Zhang J 2017 Mater Charact 130 123 doi: https://doi.org/10.1016/j.matchar.2017.05.038

    Article  CAS  Google Scholar 

  20. Jazaeri H and Humphreys F J 2004 Acta Mater 52 3239 doi: https://doi.org/10.1016/j.actamat.2004.03.030

    Article  CAS  Google Scholar 

  21. Schuh C A, Kumar M and King W E 2005 J Mater Sci 40 847 doi: https://doi.org/10.1007/s10853-005-6500-9

    Article  CAS  Google Scholar 

  22. Kumar M, Schwartz A J and King W E 2002 Acta Mater 50 2599 doi: https://doi.org/10.1016/s1359-6454(02)00090-3

    Article  CAS  Google Scholar 

  23. Wang T, Zou Y, Liu X and Matsuda K 2016 Mat Sci Eng A 671 7 doi: https://doi.org/10.1016/j.msea.2016.06.050

    Article  CAS  Google Scholar 

  24. Prangnell P B and Heason C P 2005 Acta Mater 53 3179 doi: https://doi.org/10.1016/j.actamat.2005.03.044

    Article  CAS  Google Scholar 

  25. Darbal A D, Ganesh K J, Liu X, Lee S B, Ledonne J, Sun T, Yao B, Warren A P, Rohrer G S, Rollett A D, Ferreira P J, Coffey K R and Barmak K 2013 Microsc Microanal 19 111 doi: https://doi.org/10.1017/s1431927612014055

    Article  CAS  Google Scholar 

  26. Chan H M and Humphreys F J 1984 Acta Metall 32 235 doi: https://doi.org/10.1016/0001-6160(84)90052-x

    Article  CAS  Google Scholar 

  27. Pantleon W 1998 Acta Mater 46 451 doi: https://doi.org/10.1016/s1359-6454(97)00286-3

    Article  CAS  Google Scholar 

  28. Orowan E 1934 Zeitschrift Fur Physik 89 605 doi: https://doi.org/10.1007/bf01341478

    Article  Google Scholar 

  29. Fullman R L and Fisher J C 1951 J Appl Phys 22 1350 doi: https://doi.org/10.1063/1.1699865

    Article  CAS  Google Scholar 

  30. Gleiter H 1969 Acta Metall 17 1421 doi: https://doi.org/10.1016/0001-6160(69)90004-2

    Article  CAS  Google Scholar 

  31. Yang P and Engler O 1998 Mater Charact 41 165 doi: https://doi.org/10.1016/S1044-5803(98)00027-8

    Article  CAS  Google Scholar 

  32. Alvi M H, Cheong S, Weiland H and Rollett A D 2004 Mater Sci Forum 467 357 doi: https://doi.org/10.4028/www.scientific.net/MSF.467-470.357

    Article  Google Scholar 

  33. Su H, Wu C S, Bachmann M and Rethmeier M 2015 Mater Design 77 114 doi: https://doi.org/10.1016/j.matdes.2015.04.012

    Article  Google Scholar 

  34. Su H, Wu C S, Pittner A and Rethmeier M 2014 Energy 77 720 doi: https://doi.org/10.1016/j.energy.2014.09.045

    Article  CAS  Google Scholar 

  35. Matsuda K, Ishida Y, Mullerova I, Frank L and Ikeno S 2006 J Mater Sci 41 2605 doi: https://doi.org/10.1007/s10853-006-7819-6

    Article  CAS  Google Scholar 

  36. Matsuda K, Kawabata T, Uetani Y, Sato T and Ikeno S 2002 J Mater Sci 37 3369 doi: https://doi.org/10.1023/a:1016545124410

    Article  CAS  Google Scholar 

  37. Matsuda K, Kawabata T, Uetani Y, Sato T and Ikeno S 2002 Scripta Mater 47 467 doi: https://doi.org/10.1016/s1359-6462(02)00173-2

    Article  CAS  Google Scholar 

  38. Fiawoo M, Gao X, Bourgeois L, Parson N, Zhang X Q, Couper M and Nie J F 2014 Scripta Mater 88 53 doi: https://doi.org/10.1016/j.scriptamat.2014.05.013

    Article  CAS  Google Scholar 

  39. Matsuda K, Uetani Y, Sato T and Ikeno S 2001 Metall Mater Trans A 32 1293 doi: https://doi.org/10.1007/s11661-001-0219-2

    Article  Google Scholar 

  40. Cayron C and Buffat P A 2000 Acta Mater 48 2639 doi: https://doi.org/10.1016/s1359-6454(00)00057-4

    Article  CAS  Google Scholar 

  41. Yassar R S, Baird J C and Horstemeyer M F 2009 Mat Sci Eng A 517 286 doi: https://doi.org/10.1016/j.msea.2009.04.013

    Article  CAS  Google Scholar 

  42. Das U, Toppo V, Sahoo T K and Sahoo R 2018 Trans Indian Inst Met 71 823 doi: https://doi.org/10.1007/s12666-017-1213-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by 2018 Key Research and Development Project of Shandong Province (No.2018CXGC0403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zou Yong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Shuwei, D., Matsuda, K. et al. Dynamic Recrystallization and Dynamic Precipitation in AA6061 Aluminum Alloy During Friction Stir Welding. Trans Indian Inst Met 75, 1329–1339 (2022). https://doi.org/10.1007/s12666-021-02490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02490-5

Keywords

Navigation