Skip to main content

Advertisement

Log in

Effect of Nano-ZrO\(_2\) Additions on Fabrication of ZrO\(_2\)/ZE41 Surface Composites by Friction Stir Processing

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) technique was used to fabricate surface metal matrix composites of the newly commercialized ZE41-rare earth magnesium alloy (in cast form) using nano-ZrO\(_2\) reinforcement particles. The volume percentage of reinforcement particles was varied as 4N\(\%\) (where N \(\in \) [1,2,3,4]) in the matrix. The results of microstructural examinations revealed the refinement of grains from 113 to 0.7 µm. The intermetallic compound (Mg\(_7\)Zn\(_3\)RE) present at the grain boundaries was seen to be distributed as particles after FSP suggesting the formation of fine grains. The presence of reinforcement particles and evolution of fine grains at the stir zone leads to increase in mechanical properties of fabricated composites. The microhardness was seen increased from 70 HV (ZE41) to 119 HV (ZE41-16\(\%\) ZrO\(_2\) MMC). The tensile strength was observed to be increased from 154.5 MPa (ZE41) to 195.5 MPa (ZE41-12\(\%\) ZrO\(_2\) MMC). From the present study, it was learnt that the addition of nano-ZrO\(_2\) particles coupled with optimized FSP parameters led to the formation of defect-free nanocomposites with increased mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun W, Qiao X, Zheng M, Hu N, Gao N, and Starink M, Mater Sci Eng A 738 (2018) 238.

    Article  CAS  Google Scholar 

  2. Nimityongskul S, Jones M, Choi H, Lakes R, Kou S, and Li X, Mater Sci Eng A 527 (2010) 2104.

    Article  Google Scholar 

  3. Cao F, Song G L, and Atrens A, Corros Sci 111 (2016) 835.

    Article  CAS  Google Scholar 

  4. Raja A, Pancholi V, J Mater Process Technol 248 (2017) 8.

    Article  CAS  Google Scholar 

  5. Emley E, New York, London (1966).

  6. HASSAN S F, Creation of New Magnesium-Based Material Using Different Types of Reinforcements. Ph.D. Thesis (2006).

  7. Ayers J, Tucker T, Thin Solid Films 73 (1980) 201.

    Article  CAS  Google Scholar 

  8. Melgarejo Z H, Suárez O M, and Sridharan K, Compos Part A Appl Sci Manuf 39 (2008) 1150.

    Article  Google Scholar 

  9. Zheng X, Huang M, and Ding C, Biomaterials 21 (2000) 841.

    Article  CAS  Google Scholar 

  10. Singh R, Gilbert D R, Fitz-Gerald J, and Lee D G, Surf Eng 13 (1997) 389.

    Article  CAS  Google Scholar 

  11. Zhao Y, Huang X, Li Q, Huang J, Yan K, Int J Adv Manuf Technol 78 (2015) 1437.

    Article  Google Scholar 

  12. Sharma V, Prakash U, and Kumar B M, J Mater Process Technol 224 (2015) 117.

    Article  CAS  Google Scholar 

  13. Sunil B R, Reddy G P K, Patle H, and Dumpala R, J Magnes Alloys 4 (2016) 52.

    Article  CAS  Google Scholar 

  14. Dinaharan I, Zhang S, Chen G, and Shi Q, J Alloys Compd 820 (2020) 153071.

    Article  CAS  Google Scholar 

  15. Sunil B R Surface Engineering by Friction-assisted Processes: Methods, Materials, and Applications, CRC Press, Florida (2019).

    Book  Google Scholar 

  16. Faraji G, Asadi P, Mater Sci Eng A 528 (2011) 2431.

    Article  Google Scholar 

  17. Ahmadkhaniha D, Sohi M H, Salehi A, and Tahavvori R, J Magnes Alloys 4(4), 314 (2016)

    Article  CAS  Google Scholar 

  18. Khayyamin D,  Mostafapour A, and Keshmiri R, Mater Sci Eng A 559 (2013) 217.

    Article  CAS  Google Scholar 

  19. Lee C, Huang J, and Hsieh P, Scr Mater 54 2006) 1415.

    Article  CAS  Google Scholar 

  20. Huang Y, Wang T, Guo W, Wan L, and Lv S, Mater Des 59 (2014) 274.

    Article  CAS  Google Scholar 

  21. Erfan Y, Kashani-Bozorg S F, Int J Nanosci 10 (2011) 1073.

    Article  CAS  Google Scholar 

  22. Morisada Y, Fujii H, Nagaoka T, and Fukusumi M, Mater Sci Eng A 419 (2006) 344.

    Article  Google Scholar 

  23. Navazani M, Dehghani K, J Mater Process Technol 229 (2016) 439.

    Article  CAS  Google Scholar 

  24. Vairavignesh R, Trans IMF 97 (2019) 261

    Article  CAS  Google Scholar 

  25. Qiao K, Zhang T, Wang K, Yuan S, Zhang S, Wang L, Wang Z, Peng P, Cai J, and Liu C, Front Bioeng Biotechnol 9 (2021) 197.

    Google Scholar 

  26. Wang Y, Huang Y, Meng X, Wan L, and Feng J, J Alloys Compd 696 (2017) 875.

    Article  CAS  Google Scholar 

  27. Huang Y, Wang Y, Meng , Wan L, Cao J, Zhou L, and Feng J, J Mater Process Technol 249 (2017) 331.

    Article  CAS  Google Scholar 

  28. Polmear I, Light Alloys: From Traditional Alloys to Nanocrystals, Elsevier, Amsterdam (2005).

    Google Scholar 

  29. Ma A, Jiang J, Saito N, Shigematsu I, Yuan Y, Yang D, and Nishida Y, Mater Sci Eng A 513 (2009) 122.

    Article  Google Scholar 

  30. Feng A, Ma Z, Acta Mater 57 (2009) 4248.

    Article  CAS  Google Scholar 

  31. Humphreys F J, Prangnell P B, and Priestner R, Curr Opin Solid State Mater Sci 5 (2001) 15.

    Article  CAS  Google Scholar 

  32. Casati R, Aluminum Matrix Composites Reinforced with Alumina Nanoparticles, Springer, New York (2016).

    Book  Google Scholar 

  33. Postopkom V T, Mater Tehnol 53 (2019) 193.

    Article  Google Scholar 

  34. Saikrishna N, J Magnes Alloys 4 (2016) 68.

    Article  CAS  Google Scholar 

  35. CI C, Hr P, Jc H, Mater Trans 47 (2006) 2942.

    Article  Google Scholar 

  36. Balakrishnan M, Dinaharan I, Palanivel R, and  Sivaprakasam R, J Magnes Alloys 3 (2015) 76.

    Article  CAS  Google Scholar 

  37. Morisada Y, Fujii H, Nagaoka T, and Fukusumi M, Mater Sci Eng A 433 (2006) 50.

    Article  Google Scholar 

  38. Zhang Z, Chen D, Mater Sci Eng A 483 (2008) 148.

    Article  Google Scholar 

  39. Habibnejad-Korayem M, Mahmudi R, and Poole W J, Mater Sci Eng A 519 (2009) 198.

    Article  Google Scholar 

  40. Sanaty-Zadeh A, Mater Sci Eng A 531 (2012) 112.

    Article  CAS  Google Scholar 

  41. Goh C, Wei J, Lee L, and Gupta M, Acta Mater 55 (2007) 5115.

    Article  CAS  Google Scholar 

  42. Xiao P, Gao Y, Yang C, Liu Z, Li Y and Xu F, Mater Sci Eng A 710 (2018) 251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhail Ahmed Manroo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manroo, S.A., Khan, N.Z. & Ahmad, B. Effect of Nano-ZrO\(_2\) Additions on Fabrication of ZrO\(_2\)/ZE41 Surface Composites by Friction Stir Processing. Trans Indian Inst Met 75, 1181–1194 (2022). https://doi.org/10.1007/s12666-021-02473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02473-6

Keywords

Navigation