Skip to main content

Advertisement

Log in

Effect of Heat Treatment on the Damping Characteristics of Ni Surface-Deposited Agro Reinforced Metal Matrix Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The current study chiefly endeavours about adjudicating the heat treatment characteristics on the energy dissipation behaviour of nickel surface-deposited Al/RHA metal matrix composites (MMC). The base A356.2 matrix system is reinforced with rice husk (RHA) at three dissimilar wt.%, viz. (2, 4, and 6%), by engaging customary stir casting practise. Then, the fabricated Al/RHA composites are nickel surface deposited through conventionally stirred electrolytic aqueous watts solution. The energy dissipation behaviour of the relatively surface-deposited MMCs preceding and succeeding T6 heat treatment is examined by engaging a dynamic mechanical analyser at three distinct frequencies, viz. (0.1, 1, and 10 Hz). The surface deposition morphology is reviewed thoroughly using XRD, SEM, and FESEM techniques. It is evident the T6 heat-treated nickel-deposited test specimen’s yielded enhanced energy dissipation tendencies in comparison with the test samplings specimens before heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li X, Fan Y, Zhao X, Ma R, Du A, Cao X, and Ban H, Metals 9 (2019) 1195.

    Article  CAS  Google Scholar 

  2. Ahmadi A, Toroghinejad M R, and Najafizadeh A, Mater Des 53 (2014) 13.

    Article  CAS  Google Scholar 

  3. Zhang Y, Ma N, and Wang H, Mater Lett 61 (2007) 3273.

    Article  CAS  Google Scholar 

  4. Zhang Y, Wang H, Ma N, and Li X, Mater Lett 59 (2005) 3398.

    Article  CAS  Google Scholar 

  5. Kang C S, Maeda K, Wang K J, and Wakashima K, Acta Mater 46 (1998) 1209.

    Article  CAS  Google Scholar 

  6. Srikanth N, Saravanaranganathan D, and Gupta M, Mater Sci Technol 20 (2004) 1389.

    Article  CAS  Google Scholar 

  7. Ludwigson M N, Lakes R S, and Swan C C, J Compos Mater 36 (2002) 2245.

    Article  CAS  Google Scholar 

  8. Gu J, Zhang X, and Gu M, J Alloys Compd 385 (2004) 104.

    Article  CAS  Google Scholar 

  9. Srikanth N, and Gupta M, Scr Mater 45 (2001) 1031.

  10. Zhang J, Perez R J, and Lavernia E J, Acta Metall Mater 42 (1994) 395.

  11. Gu J H, Zhang X N, Gu M, Gu M, and Wang X, J Alloys Compd 372 (2004) 304.

  12. Chu H S, Liu K S, and Yeh J W, J Mater Res 16 (2001) 1372.

    Article  CAS  Google Scholar 

  13. El-Kady E Y, Mahmoud T S, El-Betar A A, and Abdel-Aziz M, Mater Sci Appl 3 (2012) 815.

  14. Elomari S, Boukhili R, Skibo M D, Masounave J, J Mater Sci 30 (1995) 3037.

    Article  CAS  Google Scholar 

  15. Zhang H, and Gu M, J Alloys Comps 426 (2006) 247.

    Article  CAS  Google Scholar 

  16. Perez R J, Zhang J, Gungor M N, and Lavernia E J, Metall Trans A 24 (1993) 701.

    Article  Google Scholar 

  17. Wolfenden A, and Kinra V K, Mechanics and Mechanisms of Material Damping, American Society for Testing and Materials, Philadelphia (1997), p 313.

    Book  Google Scholar 

  18. Bauri R, and Surappa M K, Metall Mater Trans A 36 (2005) 667.

  19. Wei J N, Wang D Y, Xie W J, Luo J L, and Han F S, Phys Lett A 366 (2007) 134.

    Article  CAS  Google Scholar 

  20. Ma Z, Han F, Wei J, and Gao J, Sci China Ser A Math 44 (2001), 655.

    Article  CAS  Google Scholar 

  21. Bishop J E, and Kinra V K, Metall Mater Trans A 26 (1995) 2773.

    Article  Google Scholar 

  22. Awizar D A, Othman N K, Jalar A, Daud A R, Rahman I A, and Al-Hardan N H, Int J Electrochem Sci 8 (2013) 1759.

    CAS  Google Scholar 

  23. Tiwari S, and Pradhan M K, Mater Today Proc 4 (2017) 486.

    Google Scholar 

  24. Ebenezer N S, Narayana P S, and Ramakrishna A, Mater Today Proc 27 (2020) 1278.

    CAS  Google Scholar 

  25. Wu G H, Dou Z Y, Jiang L T, and Cao J H, Mater Lett 60 (2006) 2945.

    Article  CAS  Google Scholar 

  26. Kumar B P, and Birru A K, Trans Nonferrous Met Soc China 27 (2017) 2555.

    Article  CAS  Google Scholar 

  27. Daramola O O, Adediran A A, and Fadumiye A T, Leonardo Electron J Pract Technol 27 (2015) 107.

    Google Scholar 

  28. Alaneme K K, Ekperusi J O, and Oke S R, J King Saud Univ Eng Sci 30 (2018) 391.

    Article  Google Scholar 

  29. Rezaei M, Jeshvaghani R A, Shahverdi HR, Mojaver R, and Torkamany M J, J Manuf Process 29 (2017) 3109.

    Article  Google Scholar 

  30. Guan J, Wang J, and Zhang D, Appl Phys A 124 (2018) 436.

    Article  Google Scholar 

  31. Allahkaram S R, Nazari M H, Mamaghani S, and Zarebidaki A, Mater Des 32 (2011) 750.

    Article  CAS  Google Scholar 

  32. Nair S, Sellamuthu R, and Saravanan R, Mater Today Proc 5 (2018) 6617.

    CAS  Google Scholar 

  33. Di Bari G A, Mod Electroplating 5 (2000) 79.

    Google Scholar 

  34. Oluwole O O, Atanda P O, Odekunbi O A, and Odegbaju E, J Miner Mater Charact Eng 8 (2009) 803.

  35. Hu X S, Wu K, Zheng M Y, Gan W M, and Wang X J, Mater Sci Eng A 452 (2007) 374.

    Article  Google Scholar 

  36. Xiuqing Z, Lihua L, Naiheng M, and Haowei W, Mater Lett 60 (2006) 600.

    Article  Google Scholar 

  37. Jiao Y Q, Wen Y H, Ning L I, He J Q, and Jin T E N G, Trans Nonferrous Met Soc China 19 (2009) 616.

    Article  CAS  Google Scholar 

  38. Prasad D S, Ebenezer N S, Shoba C, and Pujari S R, Mater Res Express 5 (2018) 116409.

    Article  Google Scholar 

  39. Alaneme K K, and Sanusi K O, Eng Sci Technol Int J 18 (2015) 416.

    Article  Google Scholar 

  40. Gladston J A K, Dinaharan I, Sheriff N M, and Selvam J D R, J Asian Ceram Soc 5 (2017) 127.

    Article  Google Scholar 

  41. Liu G, Tang S, Ren W, Hu J, and Li D, Mater Des 46 (2013) 916.

    Article  CAS  Google Scholar 

  42. Zhang Y, Ma N, Li X, and Wang H, Mater Des 29 (2008) 1057.

    Article  Google Scholar 

  43. Zhang J, Perez R J, and Lavernia E J, J Mater Sci 28 (1993) 835.

    Article  CAS  Google Scholar 

  44. Zhang Y, Ma N, Wang H, Le Y, and Li X, Mater Des 28 (2007) 628.

    Article  Google Scholar 

  45. Deng K K, Li J C, Nie K B, Wang X J, and Fan J F, Mater Sci Eng A 624 (2015) 62.

    Article  CAS  Google Scholar 

  46. Zhang X, Wu R, and Li X, Sci China 44 (2001) 640.

    CAS  Google Scholar 

  47. Molina J M, Saravanan R A, Narciso J, and Louis E, Mater Sci Eng A 383 (2004) 299.

    Article  Google Scholar 

  48. Göken J, and Riehemann W, Mater Sci Eng A 370 (2004) 417.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitla Stanley Ebenezer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebenezer, N.S., Vinod, B., Ramakrishna, A. et al. Effect of Heat Treatment on the Damping Characteristics of Ni Surface-Deposited Agro Reinforced Metal Matrix Composites. Trans Indian Inst Met 74, 439–446 (2021). https://doi.org/10.1007/s12666-020-02166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02166-6

Keywords

Navigation