Skip to main content
Log in

CMT Joining of AA6061-T6 and AA6082-T6 and Examining Mechanical Properties and Microstructural Characterization

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nowadays, CMT is used for joining dissimilar thickness of dissimilar metals for achieving higher mechanical strength by using properties of both the metals. Joining of dissimilar aluminium alloys with dissimilar thickness by using gas metal arc welding with cold metal transfer (GMAW-CMT) process, is the primary objective of this work. CMT butt joining of 6061-T6 (3.18 mm) and 6082-T6 (2 mm) aluminium alloys was carried out by using ER4043 (Al–5%Si) wire. Mechanical properties and microstructural characterization were carried out for the weld bead. Microstructural examination at different weld zones is studied using optical microscope and field emission scanning electron microscope (FESEM). Macro-structural images were captured to study the weld bead geometry in relation to heat input. Mechanical properties were examined by Vicker’s microhardness and tensile test (with reinforcement, that is, the actual profile of the bead and without reinforcement, that is, the profile of bead are flattened to the surface of the plate). The residual stresses were measured using high-resolution X-ray diffraction (HR-XRD) method. Results showed significant changes in mechanical properties when heat input was in the range of 120–130 J/mm. Removal of reinforcement height improved almost 7–11% of tensile strength. Compressive residual stresses were experienced in the weldment. Comparatively cold metal transfer (CMT) showed better residual stress results than metal inert gas (MIG) welding at the same heat input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. İrizalp A O, Durmuş H, Yüksel N, and Türkmen İ. Matéria (Rio de Janeiro) 21 (2016) 615.

    Article  Google Scholar 

  2. Schierl A. Weld. World Lond. 49 (2005) 38.

    Google Scholar 

  3. Feng J, Zhang H, and He P. Mater Des. 30 (2009) 1850.

    Article  CAS  Google Scholar 

  4. Fang J, Gao Y, Sun G, and Li Q. Finite Elements Anal. Des. 67 (2013) 13.

    Article  Google Scholar 

  5. Totten G E, and MacKenzie D S. Handbook of Aluminum: Physical Metallurgy and Processes. CRC press, New York (2003).

    Book  Google Scholar 

  6. Kaufman J G. Introduction to Aluminum Alloys and Tempers. ASM international, Cleveland (2000).

    Google Scholar 

  7. Mathers G. The welding of Aluminium and Its Alloys. Woodhead Publishing, Sawston (2002).

    Book  Google Scholar 

  8. Mossman M M, and Lippold J C. Weld. J. New York 81 (2002) 188.

    Google Scholar 

  9. Pickin C G, Williams S W, Lunt M. J Mater Process Technol 211 (2011) 496.

    Article  CAS  Google Scholar 

  10. Hermans M J M, and Den Ouden G. Weld. J New York (1999)137.

  11. Li-Li G, Ling-Shen F, and Ming-Yang, Z. . Research on the line of laser tailor welded blanks. In Information Engineering and Applications: (2012) 315–322.

  12. Gery D, Long H, and Maropoulos P. J Mater Process Technol 167 (2005) 393.

    Article  CAS  Google Scholar 

  13. Aslanlar S, Ogur A, Ozsarac U, Ilhan E, and Demir Z. Mater Des 28 (2007) 2.

    Article  CAS  Google Scholar 

  14. Xia M, Tian Z, Zhao L, and Zhou Y N, Mater Trans 49 (2008) 746.

    Article  CAS  Google Scholar 

  15. Liu J, Wang A, Zheng Y, Liu X, Gandra J, Beamish K, Petre A, and Wang L L Procedia Eng 207 (2017) 729.

    Article  CAS  Google Scholar 

  16. Moulton J A, and Weckman D C, Weld J 89 (2010) 11.

    Google Scholar 

  17. Sterjovski Z, Bayley C, Donato J, Lane N, and Lang D. Weld-end solidification cracking in pulsed-tandem gas metal arc welding of naval steels (2014).

  18. Liu X, Frankel G S, Zoofan B, and Rokhlin S I. Corros Sci 49 (2007) 139.

    Article  CAS  Google Scholar 

  19. Shu F, Lv Y, Liu Y, Xu F, Sun Z, He P, and Xu B, Construct Build Mater 54 (2014) 224.

    Article  Google Scholar 

  20. Petroyiannis P V, Kamoutsi E, Kermanidis A T, Pantelakis S G, Bontozoglou V, and Haidemenopoulos G N. Fatigue Fracture Eng Mater Struct 28 (2005) 565.

    Article  CAS  Google Scholar 

  21. Lynch S P. Acta Metall 36 (1988) 2639.

    Article  CAS  Google Scholar 

  22. Moreira P M G P, Santos T, Tavares S M O, Richter-Trummer V, Vilaça P, and De Castro P M S T, Mater Des 30 (2009) 180.

    Article  CAS  Google Scholar 

  23. Elrefaey A, and Ross N G. Acta Metallurgica Sinica (English Letters) 28 (2015) 715.

    Article  CAS  Google Scholar 

  24. Ahmad R, and Bakar M A. Mater Des 32 (2011) 5120.

    Article  CAS  Google Scholar 

  25. Cook G E, and Eassa H E D E IEEE Trans Ind Appl (5) (1985) 1294.

  26. Mendez P F, and Eagar T W. Adv Mater Process 159 (2001) 39.

    CAS  Google Scholar 

  27. Quintino L, Liskevich O, Vilarinho L, and Scotti A. Int J Adv Manufact Technol 68 (2013) 2833.

    Article  Google Scholar 

  28. Joseph A, Harwig D, Farson D F, and Richardson R. Sci Technol Weld J 8 (2003) 400.

    Article  Google Scholar 

  29. Cao R, Yu G, Chen J H, and Wang P C, J Mater Process Technol 213 (2013) 1753.

    Article  CAS  Google Scholar 

  30. Cao R, Feng Z, Lin Q, and Chen J H, Mater Des 56 (2014) 165.

    Article  CAS  Google Scholar 

  31. Wang J, Feng J C, and Wang Y X. Mater Sci Technol 24 (2008) 827.

    Article  CAS  Google Scholar 

  32. Lorenzin G, and Rutili G. Weld Int 23 (2009) 622.

    Article  Google Scholar 

  33. Lin J, Ma N, Lei Y, and Murakawa H. J Mater Process Technol 213 (2013) 1303.

    Article  CAS  Google Scholar 

  34. Yang S, Zhang J, Lian J, and Lei Y. Mater Des 49 (2013) 602.

    Article  CAS  Google Scholar 

  35. Gungor B, Kaluc E, Taban E, and Aydin S I K. Mater Des 54 (2014) 207.

    Article  CAS  Google Scholar 

  36. Liang Y, Shen J, Hu S, Wang H, and Pang J. J Mater Process Technol 255 (2018) 161.

    Article  CAS  Google Scholar 

  37. Nie F, Dong H, Chen S, Li P, Wang L, Zhao Z, Li X, and Zhang H. J Mater Sci Technol 34 (2018) 551.

    Article  Google Scholar 

  38. Eskin D G. Physical Metallurgy of Direct Chill Casting of Aluminum Alloys. CRC Press, Boca Raton (2008).

    Book  Google Scholar 

  39. Mondolfo L F. Aluminium alloys: structure and properties. Butter Worths, London, 1. Ausgabe S: 72 (1976).

  40. Ishak M, Noordin N F M, Razali A S K, Hakim L, and Shah A. The effect of filler ER4043 and ER5356 on weld metal structure of 6061 aluminium alloy by Metal Inert Gas (MIG). methanol yield over Bi2S3/CdS photocatalyst:4 (2015).

  41. Maisonnette D, Suery M, Nelias D, Chaudet P, and Epicier T. Mater Sci Eng A 528 (2011) 2718.

    Article  Google Scholar 

  42. Koli Y, Yuvaraj N, Aravindan S. Mater Res Express 6 (2020) 1265e5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant Koli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koli, Y., Yuvaraj, N., Aravindan, S. et al. CMT Joining of AA6061-T6 and AA6082-T6 and Examining Mechanical Properties and Microstructural Characterization. Trans Indian Inst Met 74, 313–329 (2021). https://doi.org/10.1007/s12666-020-02134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02134-0

Keywords

Navigation