Skip to main content
Log in

Microstructure and Properties of Casting Fe–Cr–B Alloy After Quenching Treatment

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The as-cast microstructure of Fe–4Cr–B alloy has been systematically investigated, which contains 1 wt%B, 4 wt%Cr, 0.35 wt%C, 0.8 wt%Si and 0.8 wt%Mn. The investigation was carried out by optical microscopy (OM), scanning electron microscopy (EDS/SEM), X-ray diffraction (XRD), hardness tester and wear tester, and the quenching temperature effect on its microstructure and mechanical property was studied. The results showed that ferrite, pearlite, martensite and borocarbides were the main composition of the solidification microstructure of casting Fe–4Cr–B alloy. After water quenching at 950–1150 °C, the matrix transformed to martensite, and the secondary borocarbides M23 (C, B)6 precipitated from the matrix, and then the continuous distribution of M2 (B, C) (M = Fe, Cr, Mn) among dendrites began to break. As the water quenching temperature increased, the phenomenon of disconnection became more clearly. When the water quenching temperature was 1100 °C, the network borocarbides fractured and formed an isolated distribution. The hardness of the alloy increased first and then decreased. At water quenching temperature of 1100 °C, the hardness reached the maximum of 62.8 HRC. The abrasive resistance and hardness of casting Fe–4Cr–B alloy changed at the same trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gou J, Lu P, Wang Y, Liu S, and Zou Z, Appl Surf Sci 360 (2016) 849.

    Article  Google Scholar 

  2. Nilsson A, Kirkhorn L, Andersson M, and Stahl J E, Wear 271 (2011) 1280.

    Article  Google Scholar 

  3. Lin C H, Komeya K, Meguro T, Tatami J, Abe Y, and Komatsu M, J Ceram Soc Jpn 111 (2003) 452.

    Article  Google Scholar 

  4. Wiengmoon A, Pearce J T H, and Chairuangsri T, Mater Chem Phys 125 (2011) 739.

    Article  Google Scholar 

  5. Zhi X H, Liu J Z, Xing J D, and Ma S Q, Mater Sci Eng A 603 (2014) 98.

    Article  Google Scholar 

  6. Albertin E, Beneduce F, Matsumoto M, and Teixeira I, Wear 271 (2011) 1813.

    Article  Google Scholar 

  7. Zhang H, Fu H, Jiang Y, Guo H, Lei Y, Zhou R, and Cen Q, Mater Sci Eng Technol 42 (2011) 765.

    Google Scholar 

  8. Christodoulou P, and Calos N, Mater Sci Eng, A301 (2001) 103.

    Article  Google Scholar 

  9. Zhang J J, Gao Y M, Xing J D, Ma S Q, Yi D W, and Yan J B, Tribol Lett 44 (2011) 31.

    Article  Google Scholar 

  10. Yi D W, Xing J D, Ma S Q, Fu H G, Li Y F, Chen W, Yan J B, Zhang J J, and Zhang R R, Tribol Lett 45 (2012) 427.

    Article  Google Scholar 

  11. Yi Y L, Xing J D, Wan M J, Yu L L, Lu Y F, Jian Y X, Mater Sci Eng A 708 (2017) 274.

    Article  Google Scholar 

  12. Yüksel N, and Şahin S, Mater Design 58 (2014) 491.

    Article  Google Scholar 

  13. Cen Q, Zhang H, and Fu H, J Iron Steel Res Int 21 (2014) 532.

    Article  Google Scholar 

  14. Ju J, Fu H G, Fu D M, Wei S Z, Sang P, Wu Z W, Tang K Z, and Lei Y P, Ironmak Steelmak 45 (2018) 176.

    Article  Google Scholar 

  15. Hao S, Modern Cast Iron, Metallurgical Industry Press, Beijing (2009).

    Google Scholar 

  16. Gu J, Fu H, Lei Y, and Ma S, Mater Test 57 (2015) 22.

    Article  Google Scholar 

  17. Ma S Q, Xing J D, Fu H G, Gao Y M, and Zhang J J, Acta Mater 60 (2012) 831.

    Article  Google Scholar 

  18. Wang S L, Cui L, He D Y, Zhou Z, and Jiang J M, Hot Work Technol 1 (2016) 30.

    Google Scholar 

  19. Xiao-Le C, Jiang J, Yin-Hu Q, Li C, and Han-Guang F, Trans Indian Inst Met 71 (2018) 2261.

    Article  Google Scholar 

  20. Du Z Z, Li Y, Fu H G, Liu F, and Zhang H, Trans Mater Heat Treat 35 (2014) 50.

    Google Scholar 

  21. Hanguang F, Xuding S, Yongping L, Zhiqiang J, Jun Y, Jinhua W, and Jiandong X, Metals Mater Int 15 (2009) 345.

    Article  Google Scholar 

  22. Fu H, Liu X, Yang Y, and Qu Y H Trans Indian Inst Met 71 (2018) 2423.

    Article  Google Scholar 

  23. Buchely M F, Gutierrez J C, León L M, and Toro A, Wear 259 (2005) 52.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support for this work from National Natural Science Foundation of China under grant (51775006) and Scientific Plan Item of Beijing Education Committee under Grant (009000546318529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Hanguang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, T., Hanguang, F., Jian, L. et al. Microstructure and Properties of Casting Fe–Cr–B Alloy After Quenching Treatment. Trans Indian Inst Met 72, 1823–1835 (2019). https://doi.org/10.1007/s12666-019-01661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01661-9

Keywords

Navigation