Skip to main content
Log in

Fractionation and Biotransformation of Lignocelluloses-Based Wastes for Bioethanol, Xylose and Vanillin Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study combined NaOH/H2SO4 pretreatment of lignocellulosic biomasses (palm fronds, eucalyptus chips, almond shells and Aleppo pine cones) were used to separate hemicellulose and lignin and improve enzymatic digestibility of cellulose. The recovered celluloses were hydrolyzed using Cellic C-Tec2 or Cellic H-Tech2. The optimal saccharification yields 95.8, 94, 73.3 and 80.5% were obtained from the recovered celluloses of palm fronds, eucalyptus chips, almond shells and Aleppo pine cones respectively using Cellic H-Tec2. The highest ethanol yield [42.6 (±0.8 g) ethanol per 100 g glucose] was obtained from pretreated palm fronds which were hydrolyzed with Cellic H-Tech2. Hemicellulosic fractions obtained after ethanol precipitation were hydrolyzed using diluted acid (10%). These fractions were essentially composed of 38% xylose. Lignins, isolated from lignocellulosic biomasses were analyzed by FT-IR, the major bands characterize the aliphatic and phenolic hydroxyl groups as well as the ketones and aliphatic esters groups. This aromatic character makes it possible to use these lignins as precursor for vanillin production. The highest vanillin production of 162 µg mL−1 was obtained after 96 h of Aleppo pine cone lignin biotransformation by isolated white rot fungi.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asgher, M., Ahmad, Z., Iqbal, H.M.N.: Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bioethanol production. Ind. Crops Prod. 44, 488–495 (2013)

    Article  Google Scholar 

  2. Iqbal, H.M.N., Kyazze, G., Keshavarz, T.: Advances in valorization of lignocellulosic materials by bio-technology: an overview. BioResources. 8, 3157–3176 (2013)

    Article  Google Scholar 

  3. Irshad, M., Anwar, Z., But, H.I., Afroz, A., Ikram, N., Rashid, U.: The industrial applicability of purified cellulose complex indigenously produced by Trichoderma viride through solid-state bio-processing of agro-industrial and municipal paper wastes. BioResources. 8, 145–157 (2013)

    Google Scholar 

  4. Isroi, M. R., Syamsiah, S., Niklasson, C., Cahyanto, M. N., Lundquist, K., Taherzadeh, M. J.: Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources. 6, 5224–5259 (2011)

    Google Scholar 

  5. Ramos, L.P.: The chemistry involved in the steam treatment of lignocellulosic materials. Química Nova. 26, 863–871 (2003)

    Article  Google Scholar 

  6. Wyman, C.E.: Alternative Fuels from biomass and their impact on carbon dioxide accumulation. Appl. Biochem. Biotechnol. 45, 897–915 (1994)

    Article  Google Scholar 

  7. Ding, S.Y., Himmel, M.E.: The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54, 597–606 (2006)

    Article  Google Scholar 

  8. Zhang, Y.H. P., Lynd, L. R.: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88, 797–824 (2004)

    Article  Google Scholar 

  9. Harmsen, P., Huijgen, W., Bermudez, L., Bakker, R.: Literature review of physical and chemical pretreatment processes for lignocellulosic biomass, Report/Wageningen UR, Food & Biobased Research;1184. Wageningen UR. Wageningen, Food & Biobased Research (2010)

  10. Bilal, M., Asgher, M., Iqbal, H. M. N., Ramzan, M.: Enhanced bio-ethanol production from old newspapers waste through alkali and enzymatic delignification. Waste Biomass Valoriz. 1–11 (2017). doi:10.1007/s12649-017-9871-7

  11. Tao, L., Aden, A., Elander, R., Pallapolu, V., Lee, Y., Garlock, R., Balan, V., Dale, B., Kim, Y., Mosier, N., Ladisch, M., Falls, M., Holtzapple, M., Sierra, R., Shi, J., Ebrik, M., Red-mond, T., Yang, B., Wyman, C., Hames, B., Thomas, S., Warner, R.: Process and techno-economic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour. Technol. 102, 11105–11114 (2011)

    Article  Google Scholar 

  12. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010)

    Article  Google Scholar 

  13. Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z., Zhang, X., Saddler, J.: Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and coproducts. Biotechnol. Bioeng. 90, 473–481 (2005)

    Article  Google Scholar 

  14. Smichi, N., Messaoudi, Y., Gargouri, M.: Lignocellulosic biomass fractionation: production of ethanol, lignin and carbon source for fungal culture. Waste Biomass Valoriz. 1–10 (2017). doi:10.1007/s12649-017-9859-3

  15. Carels, N.: The challenge of Bioenergies—an overview. In: dos Santos Bernardes, M.A. (ed.) Biofuel’s Engineering Process Technology, pp. 23–64. InTech, Rijeka (2011)

    Google Scholar 

  16. Stöcker, M.: Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed. 47, 9200–9211 (2008)

    Article  Google Scholar 

  17. Vorlop, K.D., Wilke, Th., Prüße, U.: Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources. In: Kamm, B., Gruber, P.R., Kamm, M. (eds.) Biorefineries-Industrial Process and Products, vol. 1, pp. 385–405. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2006)

    Google Scholar 

  18. Arevalo-Gallegos, A., Ahmad, Z., Asgher, M., Parra-Saldivar, R., Iqbal, H. M. N.: Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. Int. J. Biol. Macromolec. 99, 308–318 (2017)

    Article  Google Scholar 

  19. Zeikus, J.G., Jain, M.K., Elankovan, P.: Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51, 545–552 (1999)

    Article  Google Scholar 

  20. Bozell, J.J., Holladay, J.E., Johnson, D., White, F.: Top value added chemicals from biomass Volume II-Results of screening for potential candidates from biorefinery lignin. PNNL. 16983 (2007)

  21. Kamm, B., Kamm, M., Gruber, P.R., Kromu, S.: Biorefinery systems—an overview. In: Kamm, B., Gruber, P.R., Kamm, M. (eds.) Biorefineries-Industrial process and products. vol. 1, pp. 3–40. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2006)

    Google Scholar 

  22. Pilanee, V., Waraporn, A.: Feasibility study on vanillin production from jatropha curcas stem using steam explosion as a pretreatment. World Acad. Sci. Eng. Technol. 3, 05–20 (2009)

    Google Scholar 

  23. Alireza, S., Sepideh, M.R., Ali, G.: Oxidative production of vanillin from industrial lignin using oxygen and nitrobenzene: a comparative study. Int. J. Farm. Allied Sci. 24, 1165–1171 (2013)

    Google Scholar 

  24. Borges da Silval, E.A., Zabkoval, M., ArOlijol, J.D., Cateto, C.A., Barreiro’, F., Belgacem, M.N., Rodriguesl, A.E.: Valorisation of Kraft Lignin by producing vanillin and ligninbased polyurethanes: use of the biorefinery concept. NWBC, Helsinki (2009)

  25. Asgher, M., Shahid, M., Kamal, S., Iqbal, H.M.N.: Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J. Mol. Catal. B 101, 56–66 (2014)

    Article  Google Scholar 

  26. Asgher, M., Bashir, F., Iqbal, H.M.N.: A comprehensive ligninolytic pre-treatment approach from lignocellulose green biotechnology to produce bio-ethanol. Chem. Eng. Res. Des. 92(8), 1571–1578 (2014)

    Article  Google Scholar 

  27. Bilal, M., Asgher, M., Iqbal, H. M. N., Hu, H., Zhang, X.: Biotransformation of lignocellulosic materials into value-added products—a review. Int. J. Biol. Macromolec. 98, 447–458 (2017)

    Article  Google Scholar 

  28. Iqbal, H. M. N., Kamal, S.: Economical bioconversion of lignocellulosic materials to value-added products. J. Biotechnol. Biomater. 2, e112 (2012)

    Google Scholar 

  29. Bhushan, K., Ulhas, P., Arpana, J.: Biotransformation of low cost lignocellulosic substrates into vanillin by white rot fungus, Phanerochaete chrysosporium NCIM1197. Indian J. Biotechnol. 12, 281–283 (2013)

    Google Scholar 

  30. Timothy, DHB., Mark, A., Elizabeth, M.H., Rahman, R.: Review: pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28, 1883–1896 (2011)

    Article  Google Scholar 

  31. Van Soest, P.J.: Use of detergents in the analysis of fibrous feeds. Il. A rapid method for the determination of fiber and lignin. J. AOAC. 5, 829–835 (1963)

    Google Scholar 

  32. Messaoudi, Y., Smichi, N., Aallaf, T., Allaf, K., Gargouri, M.: Effect of instant controlled pressure drop pretreatment of lignocellulosic wastes on enzymatic saccharification and ethanol production. Ind. Crops Prod. 77, 910–919 (2015)

    Article  Google Scholar 

  33. Pasha, C., Valli, N., Rao, L.V.: Lantana camara for fuel ethanol production using thermotolerant yeast. Lett. Appl. Microbiol. 44, 666–672 (2007)

    Article  Google Scholar 

  34. Nutawan, Y., Phattayawadee, P., Pattranit, T., Mohammad, N.E.: Bioethanol production from rice straw. Energy Res. J. 1, 26–31 (2010)

    Article  Google Scholar 

  35. Prabu, P.C., Udayasoorian, C.: Phenol Metabolism by white rot fungus Phanerochaete chrysosporium isolated from indian paper mill effluent enriched soil samples. Asian J. Plant Sci. 4, 56–59 (2005)

    Article  Google Scholar 

  36. Betts, W.B., Dart, R.K., Ball, A.S., Pedlar, S.L.: Biosynthesis and structure of lignocellulose. In: Betts, W.B. (ed.) Biodegradation: Natural and Synthetic Materials, pp. 139–155. Springer, Berlin (1991)

    Chapter  Google Scholar 

  37. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  38. Sjostrom, E.: Wood Chemistry. Fundamentals and Applications, 2nd edn., p. 292. Academic Press, San Diego (1993)

    Google Scholar 

  39. Seonghun, K., Chul, H.K.: Bioethanol production using the sequential acid/alkali pretreated empty palm fruit bunch fiber. Renew. Energy. 54, 150–155 (2013)

    Article  Google Scholar 

  40. Novozymes, A/S.: Cellulosic ethanol: Novozymes Cellic® CTec2 and HTec2—Enzymes for hydrolysis of lignocellulosic. Luna No. 01668-03 (2010)

  41. Harun, R., Jason, WSY., Cherrington, T., Danquah, M.K.: Exploring alkaline pretreatment of microalgal biomass for bioethanol production. Appl. Energy. 88, 3464–3467 (2011)

    Article  Google Scholar 

  42. Carolina, C.M., Arturo, J.G., Mahmoud, E.H.: A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf. Environ. Prot. 90, 189–202 (2012)

    Article  Google Scholar 

  43. Chang, V.S., Holtzapple, M.T.: Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84, 5–37 (2000)

    Article  Google Scholar 

  44. Draude, K.M., Kurniawan, C.B., Duff, STB.: Effect of oxygen deliginification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour. Technol. 79, 113–120 (2001)

    Article  Google Scholar 

  45. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., Fukuda, K.: Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem. 72, 805–810 (2008)

    Article  Google Scholar 

  46. Targonski, Z.: Alkali process for enhancing susceptibility of autohydrolysed beech sawdust to enzymatic hydrolysis. Enz Microb. Technol. 7, 126–128 (1985)

    Article  Google Scholar 

  47. Kim, S., Holtzapple, M.T.: Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 1994–2006 (2005)

    Article  Google Scholar 

  48. Park, J.Y., Shiroma, R., Al-Haq, M.I., Zhang, Y., Ike, M., Arai-Sanoh, Y., Ida, A., Kondo, M., Tokuyasu, K.: A novel lime pretreatment for subsequent bioethanol production from rice straw—calcium capturing by carbonation (CaCCO) process. Bioresour. Technol. 101, 6805–6811 (2010)

    Article  Google Scholar 

  49. Chang, V., Nagwani, M., Holtzapple, M.: Lime pretreatment of crop residues bagasse and wheat straw. Appl. Biochem. Biotechnol. 74, 135–159 (1998)

    Article  Google Scholar 

  50. Mumoz, G., Mendonca, R.T., Baeza, J., Berlin, A., Saddler, J.N., Freer, J.: Bioethanol production from bioorganosolv pulps of Pinus radiata and Acacia dealbata. J. Chem. Technol. Biotechnol. 82, 767–774 (2007)

    Article  Google Scholar 

  51. Victor, A., Pulidindi, I.N., Gedanken, A.: Assessment of holocellulose for the production of bioethanol by conserving Pinus radiata cones as renewable feedstockJ. Environ. Manag. 162, 215–220 (2015)

    Google Scholar 

  52. Ballesteros, I., Negro, M.J., Olivia, J.M., Cabanas, A., Manzanares, P., Ballesteros, M.: Ethanol production from steam-explosion pretreated wheat straw. Appl. Biochem. Biotechnol. 6, 129–132 (2006)

    Google Scholar 

  53. da Silva, A.S.A, Inoue, H., Endo, T., Yano, S., Bon, EP.: Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 101, 7402–7409 (2010)

    Article  Google Scholar 

  54. McIntosh, S., Vancov, T.: Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour. Technol. 101, 6718–6727 (2010)

    Article  Google Scholar 

  55. Sills, D.L., Gossett, J.M.: Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass. Bioresour. Technol. 102, 1389–1398 (2011)

    Article  Google Scholar 

  56. Durie, R.A., Lynch, B.M., Strenhell, S.: Comparative studies of brown coal and lignin. Aust. J. Chem. 13, 156–168 (1960)

    Article  Google Scholar 

  57. Pilipchuk, Y.S., Pen, R.Z., Finkel’shtein, A.V.: Identification in infrared spectra of lignin of absorption frequencies corresponding to C–H Bonds”. Zh. Fiz. Khim. 39, 1768–1770 (1965)

    Google Scholar 

  58. Bolker, H.I., Somerville, N.G.: Infrared spectroscopy of lignins. Pulp Pap. Mag. Can. 64, 187–194 (1963)

    Google Scholar 

  59. Alriols, M.G., Garcia, A., Llano-ponte, R., Labidi, J.: Combined organosolv and ultrafiltration lignocellulosic biorefinery process. Chem. Eng. J. 157, 113–120 (2010)

    Article  Google Scholar 

  60. Garcia, A., Toledano, A., Andres, M.A., Labidi, J.: Study of the antioxidant capacity of Miscanthus sinesis lignins. Process Biochem. 45, 935–940 (2010)

    Article  Google Scholar 

  61. Sun, H., Xu, Y.K., Xu, G.Z.: Isolation of hemicellulose from wood chips via extraction with kraft green liquor. Chem. Res. Chin. Univ. 26, 667–671 (2010)

    Google Scholar 

  62. Buchala, A.J., Fraser, C.G., Wilkie, KCB.: Extraction of hemicellulose from oat tissues during the process of delignification. Phytochem. 11, 1249–1254 (1972)

    Article  Google Scholar 

  63. Blakeney, A.B., Harris, P.J., Henry, R.J., Stones, B.A.: A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 113, 291–299 (1983)

    Article  Google Scholar 

  64. Lavarack, B.P., Griffin, G.J., Rodman, D.: The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenerg. 23, 367–380 (2002)

    Article  Google Scholar 

  65. Taherzadeh, M.J., Karimi, K.: Acid based hydrolysis process for bioethanol production from lignocellulosic materials: a review. BioResources. 2, 472–499 (2007)

    Google Scholar 

  66. Canilha, L., Carvalho, W., Felipe, MGA., Silva, JBA.: Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Braz. J Microbiol. 39, 333–336 (2008)

    Article  Google Scholar 

  67. Chandel, A.K., Kapoor, R.K., Singh, A.K., Kuhad, R.C.: Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98, 1947–1950 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Gargouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messaoudi, Y., Smichi, N., Bouachir, F. et al. Fractionation and Biotransformation of Lignocelluloses-Based Wastes for Bioethanol, Xylose and Vanillin Production. Waste Biomass Valor 10, 357–367 (2019). https://doi.org/10.1007/s12649-017-0062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0062-3

Keywords

Navigation