Skip to main content
Log in

Linearly varying deceleration parameter and two scale factors universality

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present study, a new model of the universe, based on using a generalized form of the linearly varying deceleration parameter, is presented. This model is an oscillating expansion form and simultaneously a contraction form at different stages. It behaves normally as a conventional Big Bang model till the first half-age i.e. at a Big Rip (It represents the maximum value of the expansion of the universe). Then, it reverses its behavior up to the Big Crunch. Such a model has the same physical behavior at its beginning and ending stages. During its first half-age and second half-age, it begins with a singular stage and ends with a non-singular one. Yet, in the first half-age, the model covers a linearly varying deceleration parameter model. Furthermore, it covers the law of Berman and corresponds to the periodic universe of the varying deceleration parameter of the second degree in the Riemannian geometry. The effect of the constant terms in the proposed deceleration parameter is examined and discussed. Also, this article introduces a new model to explain the evolution of the universe by using the Riemannian geometry, together with a constant boundary connecting the two scaling parameters which have some quantum properties. The proposed model predicts the future of the universe after the Big Rip. The results obtained match the recent cosmological observations at the present moment. Finally, the relationship between the spin tensor and the redshift is obtained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N Banerjee and S Das Gen. Rel. Gravit. 37 1695 (2005)

    Article  ADS  Google Scholar 

  2. Ø Grøn and S Hervik Einstein’s General Theory of Relativity With Modern Applications in Cosmology (Berlin: Springer)) (2007)

    Book  MATH  Google Scholar 

  3. S R Prajapati Astrophys. Space Sci331 657 (2011)

  4. Ö Akarsu and T Dereli Inter. J. Theor. Phys. 51 612 (2012)

    Article  Google Scholar 

  5. R K Mishra and A Chand Astrophys. Space Sci. 361 259 (2016)

    Article  ADS  Google Scholar 

  6. P K Sahoo, S K Tripathy and P Sahoo Modern Phys. Lett. A 33 1850193 (2018)

    Article  ADS  Google Scholar 

  7. P K Sahoo and M Sivakumar Astrophys. Space Sci. 357 60 (2015)

    Article  ADS  Google Scholar 

  8. M A Bakry and A T Shafeek Astrophys. Space Sci. 364 135 (2019)

    Article  ADS  Google Scholar 

  9. H P Robertson Ann. Math. 33 496 (1932)

    Article  Google Scholar 

  10. C H Brans and R H Dicke Physical review 124 925 (1961)

    Article  ADS  Google Scholar 

  11. M S Berman Il Nuovo Cimento B 74 182 (1983)

    Article  ADS  Google Scholar 

  12. A W Overhauser and R Colella Physical Review Letters 33 1237 (1974)

    Article  ADS  Google Scholar 

  13. R Colella, A W Overhauser and S A Werner Phys. Rev. Lett. 34 1472 (1975)

    Article  ADS  Google Scholar 

  14. J L Staudenmann, S A Werner, R Colella and A W Overhauser Phys. Rev. A 21 1419 (1980)

    Article  ADS  Google Scholar 

  15. M A Bakry and A T Shafeek Grav. Cos. 27 89 (2021)

    Article  ADS  Google Scholar 

  16. M I Wanas Turk. J. Phys. 24 473 (2000)

    Google Scholar 

  17. M I Wanas and M A Bakry International Journal of Modern Physics A 24 5025 (2009)

    Article  ADS  Google Scholar 

  18. S Kar and S Sengupta Pramana 9 49 (2007)

    Article  ADS  Google Scholar 

  19. M I Wanas International Journal of Modern Physics A 22 5709 (2007)

  20. J V Cunha Physical Review D 79 047301 (2009)

  21. Z Li, P Wu and H Yu Phys Lett. B 695 1 (2011)

    Article  ADS  Google Scholar 

  22. M S Berman and F de Mello Gomide General Relativ. Gravit. 20 191 (1988)

    Article  ADS  Google Scholar 

  23. A G Riess et al Astrophys. J. 607 665 (2004)

    Article  ADS  Google Scholar 

  24. O Farooq et al Astrophys. J. 835 26 (2017)

    Article  ADS  Google Scholar 

  25. M E Kahil Adv. Astrophys. 3 136 (2018)

    Article  ADS  Google Scholar 

  26. M Zhang and W B Liu Physics Letters B 789 393 (2019)

    Article  ADS  Google Scholar 

  27. R Addler, M Bazin and M Schiffer Introduction to General Relativity, 2nd edn. (McGraw Hill) (1975)

  28. M A Bakry, G M Moatimid and M M Tantawy Int. J. Mod. Phys. A 36 2150073 (2021)

    Article  ADS  Google Scholar 

  29. W Tulczyjew Acta Phys. Pol. 18 94 (1959)

  30. W G Dixon General Relativity and Gravitation 4 199 (1973)

  31. W G Dixon Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Sci. 277 59 (1974)

    ADS  Google Scholar 

  32. W Han General Relativ. Gravi. 40 1831 (2008)

    Article  ADS  Google Scholar 

  33. R Plyatsko et al. arXiv preprint arXiv: 1105.2405(2011)

  34. S Perlmutter et al. Astrophys. J. 483 565 (1997)

  35. S Perlmutter et al Nature 391 51 (1998)

    Article  ADS  Google Scholar 

  36. A G Riess et al Astrophys. J. 560 49 (2001)

    Article  ADS  Google Scholar 

  37. A G Riess et al Astrophys. J. 659 98 (2007)

    Article  ADS  Google Scholar 

  38. M Lima et al Mont. Noti. R. Astro. Soci. 390 118 (2008)

    Article  ADS  Google Scholar 

  39. C Ma and T J Zhang Astrophys. J. 730 74 (2011)

    Article  ADS  Google Scholar 

  40. S L Ca and X W Duan Eur Phys. J. C 78 1 (2018)

    Article  Google Scholar 

  41. A Sarkar, S Chattopadhyay and E Güdekli Symmetry 13 701 (2021)

    Article  ADS  Google Scholar 

  42. B P Abbott et al. arXiv preprint arXiv:1710.05835 (2017)

  43. M W Coughlin et al Nat. comm. 11 1 (2020)

    Article  Google Scholar 

  44. Jr Kennicutt et al Astron. J. 110 1476 (1995)

    Article  ADS  Google Scholar 

  45. B Feng, X Wang and X Zhang Phys. Lett. B 607 35 (2005)

    Article  ADS  Google Scholar 

  46. P J E Peebles and B Ratra Rev. Mod. Phys. 75 559 (2003)

    Article  ADS  Google Scholar 

  47. M S Turner Int. J. Mod. Phys. A 17S1 180 (2002)

    Article  Google Scholar 

  48. C M Will Liv. Rev. Relat. 17 4 (2014)

    Article  Google Scholar 

  49. T Padmanabhan Phys. Rep. 380 235 (2003)

    Article  ADS  Google Scholar 

  50. P Astier et al Astrono. Astrophys. 447 31 (2006)

    Article  ADS  Google Scholar 

  51. E Komatsu et al Astrophys. J. Supp. Ser. 192 19 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University, KSA for funding this work through Research Group no. RG-21-09-42. Also, the authors would like to express their deep gratitude to Prof. M. I. Wanas for their deep interest and valuable comments during extraction of this work.

Funding

This research was funded by Imam Mohammad Ibn Saud Islamic University, KSA, Research Group no. RG-21-09-42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakry, M.A., Eid, A. & Alkaoud, A. Linearly varying deceleration parameter and two scale factors universality. Indian J Phys 97, 307–318 (2023). https://doi.org/10.1007/s12648-022-02376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02376-2

Keywords

Navigation