Skip to main content
Log in

Bursting behaviors induced by the bifurcation delay in a generalized parametrically forced van der Pol-Duffing system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Different bursting patterns and the generation principles are investigated in a generalized parametrically forced van der Pol-Duffing system. Six bursting patterns induced by the bifurcation delay, namely bursting of “delayed pitchfork/pitchfork” form, bursting of symmetric “delayed pitchfork/pitchfork” form, bursting of “delayed pitchfork/delayed sup-Hopf” form via “delayed pitchfork/pitchfork” hysteresis loop, bursting of symmetric “delayed pitchfork/delayed sup-Hopf” form via “delayed pitchfork/pitchfork” hysteresis loop, bursting of “delayed pitchfork/delayed sup-Hopf/Homoclinic” form via “delayed pitchfork/pitchfork” hysteresis loop and bursting of symmetric “delayed pitchfork/delayed sup-Hopf/Homoclinic” form via “delayed pitchfork/pitchfork” hysteresis loop, are analyzed. First, considering the parametrically forced term as a slow-changing state variable, a time invariant continuous smooth system is exhibited. Then, with the help of the calculation of the characteristic equation and bifurcation map, the critical conditions of pitchfork bifurcation, Hopf bifurcation and Homoclinic bifurcation are presented. In addition, two bifurcation delay behaviors named supercritical Hopf bifurcation delay and pitchfork bifurcation delay are proposed. Based on that, the generation mechanisms of the bursting dynamics triggered by the bifurcation delay phenomenon are revealed. The present study shows that the delayed dynamical behaviors act a crucial part in the generation of different bursting oscillations, since the delay dynamics occurs in distinct parameter intervals, which results in distinct repetitive excited state forms. Finally, the numerical simulations are provided to support the correctness of the results proposed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. N Inaba and T Tsubone Physica D 406 132493 (2020).

    Article  MathSciNet  Google Scholar 

  2. J Brechtl and X Xie PK Liaw Communications in Nonlinear Science and Numerical Simulation. 73 195 (2019).

    Article  Google Scholar 

  3. XL An and S Qiao Chaos Solitons & Fractals. 143 110587 (2021)

  4. L Ryashko and E Slepukhina Physical Review E. 96 032212 (2017).

    Article  MathSciNet  Google Scholar 

  5. S H Zhang, H L Zhang, C Wang and P Ma Chaos Solitons & Fractals. 141 110355 (2020)

  6. R Qu and SL Li Shock and Vibration. 2021 9944286 (2021)

  7. G D Leutcho S Jafari Physica Scripta. 95 075216 (2020).

    Article  Google Scholar 

  8. S Zhang and YC Zeng Chaos Solitons & Fractals. 120 25 (2019)

  9. Y T Zhang and Q J Cao WH Huang Mechanical System and Signal Processing. 161 107916 (2021).

    Article  Google Scholar 

  10. S Battaglin and MG Pedersen Nonlinear Dynamics. 104 4445 (2021)

  11. M Chen, J W Qi, H G Wu and Q Xu BC Bao Science China-Technological Sciences. 63 1035 (2020).

    Article  Google Scholar 

  12. K Shimuzu and N Inaba International Journal of Bifurcation and Chaos. 28 1830047 (2018).

    Article  Google Scholar 

  13. P K Shaw, N Chaubey, S Mukherjee and M S Janaki ANS Iyengar Physica A. 513 126–134 (2019).

    Article  Google Scholar 

  14. S Farjami and V Kirk HM Osinga SIAM Journal on Applied Dynamical Systems. 17 350 (2018).

    Article  Google Scholar 

  15. MR Zhang and QS Bi Physics Letter A. 410 127542 (2021)

  16. NM Awal and IR Epstein Physical Review E. 104 024211 (2021)

  17. D Matzakos-Karvouniari, L Gil, E Orendorff, O Marre and S Picaud B Cessac Science Reports. 9 1859 (2019).

    Google Scholar 

  18. Y Q Zhao, M T Liu and Y Zhao LX Duan Acta Physica Sinica. 70 120501 (2021).

    Article  Google Scholar 

  19. YY Wang and JE Rubin Chaos 30 043127 (2020)

  20. Y X Hao, M X Wang, W Zhang, S W Yang and L T Liu YH Qian Journal of Sound and Vibration. 495 115904 (2021).

    Article  Google Scholar 

  21. H Baldemir and D Avitabile Simulation. 80 104979 (2020).

    Google Scholar 

  22. X D Ma and W A Jiang Y Yu Communications in Nonlinear Science and Numerical Simulation. 103 105959 (2021).

    Article  Google Scholar 

  23. B C Bao, P Y Wu, H Bao, H G Wu and X Zhang M Chen Chaos Solitons & Fractals. 109 146 (2018).

    Article  Google Scholar 

  24. X J Han, Y Zhang and Q S Bi J Kurths Chaos 28 043111 (2018).

    Article  Google Scholar 

  25. H Fallah International Journal of Bifurcation and Chaos. 26 1630022 (2016)

  26. C F Yooer and J K Xu XH Zhang Chinese Physics Letters. 26 070504 (2009).

    Article  Google Scholar 

  27. K L Roberts and J E Rubin M Wechselberger SIAM Journal on Applied Dynamical Systems. 14 1808 (2015).

    Article  Google Scholar 

  28. K H Ma and H G Gu ZG Zhao SIAM Journal on Applied Dynamical Systems. 31 2150096 (2021).

    Google Scholar 

  29. Q S Bi, S L Li and J Kurths ZD Zhang Nonlinear Dynamics. 85 993 (2016).

    Article  Google Scholar 

  30. X D Ma, J Song, M K Wei and X J Han QS Bi International Journal of Bifurcation and Chaos. 31 2150082 (2021).

    Article  Google Scholar 

  31. X J Han and Q S Bi J Kurths Physical Review E. 98 010201 (2018).

    Article  Google Scholar 

  32. P Channell and G Cymbalyuk A Shilnikov Physical Review Letters. 98 134101 (2007).

    Article  Google Scholar 

  33. M Desriches and J P Francoise M Krupa Mathematical Modelling of Natural Phenomena. 14 406 (2019).

    Article  Google Scholar 

  34. Z H Wen and Z J Li X Li Chinese Journal of Physics. 66 327 (2020).

    Article  Google Scholar 

  35. X J Han and Y Yu C Zhang Nonlinear Dynamics. 88 2889 (2017).

    Article  Google Scholar 

  36. XD Ma and SQ Cao Journal of Physics A-Mathematical and Theoretical. 51 335101 (2018)

  37. CY Zhou, FXie, ZJ Li Chaos Solitons & Fractals. 137 109859 (2020)

  38. X J Han, F B Xia, P Ji and Q S Bi J Kurths Communications in Nonlinear Science and Numerical Simulation. 36 517 (2016).

    Article  Google Scholar 

  39. EM Izhikevich International Journal of Bifurcation and Chaos. 10 1171 (2000)

  40. J C Ji N Zhang Chaos Solitons & Fractals. 41 1467 (2009).

    Article  Google Scholar 

  41. J C Ji and N Zhang W Gao Chaos Solitons & Fractals. 42 975 (2009).

    Article  Google Scholar 

  42. J C Ji CH Hansen Chaos Solitons & Fractals. 28 555 (2006).

    Article  Google Scholar 

  43. JC Ji Journal of Sound and Vibration. 297 183 (2006)

  44. JC Ji Journal of Sound and Vibration. 315 22 (2008)

  45. HT Zhu Meccanica. 52 833 (2017)

  46. YY Xu and AC J Luo International Journal of Bifurcation and Chaos. 30 2030045 (2020)

  47. Y H Qian and D J Zhang BW Lin Complexity. 2021 5556021 (2021).

    Google Scholar 

  48. D Delignières, D Nourrit, T Deschamps and B Lauriot N Caillou Human Movement Science. 18 769 (1999).

    Article  Google Scholar 

  49. M S Siewe and F M M Kakmeni CTchawoua Chaos Solitons & Fractals. 21 841 (2004).

    Article  Google Scholar 

  50. P F Zhang and C H Qiao YJ Wang Acta Physica Sinica. 66 244210 (2017).

    Article  Google Scholar 

  51. ED Dejesus and C Kaufman Physical Review A. 35 5288 (1987)

  52. R Asheghi and A Nabavi Chaos Solitons & Fractals. 139 110291 (2020).

    Article  MathSciNet  Google Scholar 

  53. S M Baer and T Erneux J Rinzel SIAM Journal on Applied Mathematics. 49 55 (1989).

    Article  Google Scholar 

  54. P Mandel and T Erneux Journal of Statistical Physics. 48 1059 (1987).

    Article  MathSciNet  Google Scholar 

  55. DC Diminnie and R Haberman Physica D. 162 34 (2002)

  56. MDescroches, TJ Kaper, M Krupa Chaos. 23 046106 (2013)

  57. D Premraj, K Suresh and T Banerjee K Thamilmaran Communications in Nonlinear Science and Numerical Simulation. 37 212 (2016).

    Article  Google Scholar 

  58. Z X Wang and Z D Zhang QS Bi Nonlinear Dynamics. 100 2899 (2020).

    Article  Google Scholar 

  59. Z J Li, Y Li and M L Ma MJ Wang Brazilian Journal of Physics. 51 840 (2020).

    Article  Google Scholar 

  60. Y Yu and Z D Zhang XJ Han Communications in Nonlinear Science and Numerical Simulation. 56 380 (2018).

    Article  Google Scholar 

  61. X D Ma, W A Jiang, X F Zhang and X J Han QS Bi Physica Scripta. 96 015213 (2021).

    Article  Google Scholar 

  62. L Holden and T Erneux Journal of Mathematical Biology. 31 351 (1993).

    Article  MathSciNet  Google Scholar 

  63. MH Holmes Springer (2013)

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Grant Nos. 12002134 and 11972173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. D. Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X.D., Wang, L.F. & Bi, Q.S. Bursting behaviors induced by the bifurcation delay in a generalized parametrically forced van der Pol-Duffing system. Indian J Phys 96, 4269–4282 (2022). https://doi.org/10.1007/s12648-022-02367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02367-3

Keywords

Navigation