Skip to main content
Log in

The behavior of the active modes of the anatase phase of TiO2 at high temperatures by Raman scattering spectroscopy

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In situ Raman spectroscopy is an important tool for describing the actual phase transfer conditions in metal oxides and provides important insights into the phase transition mechanism. The particle size, non-stoichiometry, and surface stress are well-known factors in the shifting and broadening of Raman modes for the TiO2 anatase phase with increasing the temperature. Also, anharmonic effects in the form of phonon–phonon coupling and optical-phonon coupling are other factors in the shifting and broadening of Raman modes at high temperatures. In this paper, TiO2 nanocrystals in the anatase phase are synthesized by the sol–gel method. Then the structure and size of the particles are investigated using XRD diffraction and SEM. Meanwhile, the contribution of phonon–phonon coupling for the third- and fourth-order has been studied for the active modes Eg, A1g, and B1g, with increasing temperature (from room temperature to 943 K). The results of the back-scattering of in situ Raman spectroscopy show that the contribution of phonon–phonon coupling for the third-order has a significant effect on the shifting and broadening of Raman active modes. Also, the 412 cm−1 mode behavior differs from the other two modes in the contrast between anharmonic couplings contribution and pure-volume contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F D Hardcastle and I E Wach J. Phys. Chem. 95 5031 (1991)

    Article  Google Scholar 

  2. X Liu, P K Chu and C Ding Mater. Sci. Eng. R Rep. 47 49 (2004)

    Article  Google Scholar 

  3. A Fujishima and K Honda Nature 238 37 (1972)

    Article  ADS  Google Scholar 

  4. D A H Hanaor and C C Sorrell Adv. Eng. Mater. 16 248 (2014)

    Article  Google Scholar 

  5. D Kuciauskas, M S Freund, H B Gray, J R Winkler and N S Lewis J. Phys. Chem. B 105 392 (2001)

    Article  Google Scholar 

  6. G Deo et al Appl. Catal. A Gen. 91 27 (1992)

    Article  Google Scholar 

  7. S P S Porto, P A Fleury and T C Damen Phys. Rev. 154 522 (1967)

    Article  ADS  Google Scholar 

  8. I Lukačević, S K Gupta, P K Jha and D Kirin Mater. Chem. Phys. 137 282 (2012)

    Article  Google Scholar 

  9. H L Ma, J Y Yang, Y Dai, Y B Zhang, B Lu and G H Ma Appl. Surf. Sci. 253 7497 (2007)

    Article  ADS  Google Scholar 

  10. A Gajovic, M Stubicar, M Ivanda, K Furic J. Mol. Struct. 563 315 (2001)

    Article  ADS  Google Scholar 

  11. K Porkodi and S D Arokiamary Mater. Char. 58 495 (2007)

    Article  Google Scholar 

  12. K Zhua, M Sh Zhang, J M Honga and Z Yin Mater. Sci. Eng. 403 87 (2005)

    Article  Google Scholar 

  13. P M Kumar, S Badrinarayanan and M Sastry Nanocrystalline Thin Solid Films 358 122 (2000)

    Article  ADS  Google Scholar 

  14. G A Tompsett, G A Bowmaker, R P Cooney, J B Metson, K A Rodgers and J M Seakins J. Raman Spectrosc. 26 57 (1995)

    Article  ADS  Google Scholar 

  15. T Sekiya, S Ohta, S Kamei, M Hanakawa and S Kurita J. Phys. Chem. Solids 62 717 (2001)

    Article  ADS  Google Scholar 

  16. J Yan, G Wu, N Guan, L Li, Z Li and X Cao Phys. Chem. Chem. Phys. 15 10978 (2013)

    Article  Google Scholar 

  17. T Lan, X Tang and B Fultz Phys Rev B 85 094305 (2012)

    Article  ADS  Google Scholar 

  18. C R. Aita Appl. Phys. Lett. 90 213112 (2007)

  19. V Swamy, B C Muddle and Q Dai Appl. Phys. Lett. 89 163118 (2006)

    Article  ADS  Google Scholar 

  20. Y Zhang, C X Harris, P Wallenmeyer, J Murowchick and X Chen J Phys Chem C 117 24015 (2013)

    Article  Google Scholar 

  21. X Jiang et al. J. Phys. Chem. C 116 22619 (2012)

    Article  Google Scholar 

  22. A Li Bassi et al. J. Appl. Phys. 98 074305 (2005)

    Article  ADS  Google Scholar 

  23. V Swamy, A Kuznetsov, L S Dubrovinsky, R A Caruso, D G Shchukin and B C Muddle Phys. Rev. B 71 184302 (2005)

    Article  ADS  Google Scholar 

  24. D Machon et al. J. Phys. Chem. C 115 22286 (2011)

    Article  Google Scholar 

  25. Q Li et al. Mater. Res. Bull. 47 1396 (2012)

    Article  Google Scholar 

  26. D Machon, M Daniel, V Pischedda, S Daniele, P Bouvier and S LeFloch Phys. Rev. B 82 140102 (2010)

    Article  ADS  Google Scholar 

  27. N C Khang and N V Minh J. Nonlinear Opt. Phys. Mater. 17 167 (2008)

  28. S S Kanmani, N Rajkumar and K Ramachandran Int. J. Nanosci. 10 227 (2011)

  29. W F Zhang, Y L He, M S Zhang, Z Yin and Q Chen J. Phys. D Appl. Phys. 33 912 (2000)

  30. R Yew, S K Karuturi, J Liu, H H Tan, Y Wu and Ch Jagadish Opt. Express 27 761 (2019)

    Article  ADS  Google Scholar 

  31. L M Martínez Tejada, A Muñoz, M A Centeno, J A Odriozola J. Raman Spectrosc 47 189 (2016)

  32. B K Sarma, A R Pal, H Bailung and J Chutia J. Alloys Comp. 577 261 (2013)

    Article  Google Scholar 

  33. R J Gonzalez Ph D Thesis Virginia Tech (1996)

  34. G R Hearne et al. Phys. Rev. B 70 134102 (2004)

    Article  ADS  Google Scholar 

  35. B Choudhury and A Choudhury Int. Nano Lett. 3 55 (2013)

    Article  Google Scholar 

  36. M J Šćepanović, M Grujić-Brojčin, Z D Dohčević-Mitrović, Z V Popović Sci. Sinter. 41 67 (2009)

  37. M S Zhang, Z Yin, Q Chen, X J Wu and X L Ji Ferroelectrics 168 131 (1995)

    Article  Google Scholar 

  38. E J Ekoi, A Gowen, R Dorrepaal, D P Dowling Results Phys. 12 1574 (2019)

  39. N T Sahrin, R Nawaz, Ch F Kait, S L Lee and M D Hakim Wirzal Nanomaterials 10 128 (2020)

    Article  Google Scholar 

  40. N S Yuksek and N M Gasanly Cryst. Res. Technol. 40 264 (2005)

    Article  Google Scholar 

  41. N M Gasanly, H Ozkan, A Aydinli, I Yilmaz Solid State Commun. 110 231 (1999)

    Article  ADS  Google Scholar 

  42. Z H Ni et al. J. Raman Spectrosc 38 1449 (2007)

    Article  ADS  Google Scholar 

  43. H Tang and I P Herman Phys. Rev. B 43 2299 (1991)

  44. A Gajovic, K Furic, N Tomasic, S Popovic, Z Skoko, S Music J. Alloys Comp. 398 188 (2005)

    Article  Google Scholar 

  45. W S Li, Z X Shen, Z C Feng and S J Chua J. Appl. Phys. 87 7 (2000)

    Google Scholar 

  46. K Gao Physica B 398 33 (2007)

  47. M Maczka, J Hanuza, K Hermanowicz, A F Fuentes and K Matsuhira Z Hiroi J. Raman Spectrosc. 39 537 (2008)

    Article  ADS  Google Scholar 

  48. Z D Mitrovic, Z V Popovic and M Scepanovic Acta Physica Polonica A 1 116 (2009)

    Google Scholar 

  49. Y L Du, Y Deng and M S Zhang J. Phys. Chem. Solids 67 2405 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shirpay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirpay, A., Tavakoli, M. The behavior of the active modes of the anatase phase of TiO2 at high temperatures by Raman scattering spectroscopy. Indian J Phys 96, 1673–1681 (2022). https://doi.org/10.1007/s12648-021-02123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02123-z

Keywords

Navigation