Skip to main content
Log in

Novel features of the nonlinear model arising in nano-ionic currents throughout microtubules

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this manuscript, the modified exp \((-\,\Omega (\xi ))\)-expansion function method is implemented to find the new solutions to the nonlinear differential equation being the transmission line model. We obtain some new solutions to this model such as complex, exponential, trigonometric and hyperbolic functions. We plot the two- and three-dimensional surfaces of each solutions obtained in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H M Baskonus and H Bulut J. Appl. Anal. Comput. 5(4) 613 (2015)

    MathSciNet  Google Scholar 

  2. H Or-Roshid, M A Akbar, M F Hoque and N Rahman SpringerPlus 3 122 (2014)

    Article  Google Scholar 

  3. H Zedan and S J Monaquel Appl. Math. E Notes 10 103 (2010)

    MathSciNet  Google Scholar 

  4. H Bulut, T A Sulaiman and H M Baskonus Opt. Quant. Electron. 48(564) 1 (2016)

    Google Scholar 

  5. H Bulut, T A Sulaiman, H M Baskonus and A A Sandulyak Optik 135 327 (2017)

    Article  ADS  Google Scholar 

  6. A H Khater, W Malfliet, D K Callebaut and E S Kamel Chaos Solitons Fractals 14(3) 513 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. M Karimi Math. Sci. J. 9(1) 47 (2013)

    Google Scholar 

  8. E M E Zayed and H M A Rahman Appl. Math. E Notes 10 235 (2010)

    MathSciNet  Google Scholar 

  9. Z Jin-Ming and Z Yao-Ming Chin.Phys. B 20(1) 010205 (2011)

    Article  Google Scholar 

  10. M Mirzazadeh Inf. Sci. Lett. 3(1) 1 (2014)

    Article  Google Scholar 

  11. L Wazzan Commun. Nonlinear Sci. Numer. Simul. 14(6) 2642 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. X Yang, Z Deng and Y Wei Adv. Differ. Equs. 2015, 117 (2015)

    Article  Google Scholar 

  13. H M Baskonus and H Bulut Waves Random Complex Media 26(2) 189 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. H M Baskonus and M Askin 6th International Youth Science Forum “LITTERIS ET ARTIBUS” Computer Science and Engineering, Lviv, Ukraine, 24–26 November (2016)

  15. F Dusunceli and E Celik Igdir Univ. J. Inst. Sci. Technol. 7(4) 189 (2017)

    Article  Google Scholar 

  16. M F El-Sabbagh, R Zait and R M Abdelazeem J. Math. 10(4) 61 (2014)

    Google Scholar 

  17. I E Inan and D Kaya Phys. A 381 104 (2007)

    Article  MathSciNet  Google Scholar 

  18. M Akbari Comput. Methods Differ. Equs. 2(1) 50 (2014)

    MathSciNet  Google Scholar 

  19. H M Baskonus AIP Conf. Proc. 1798(020018) 1 (2017)

    Google Scholar 

  20. H M Baskonus Nonlinear Dyn. 86(1) 177 (2016)

    Article  MathSciNet  Google Scholar 

  21. H Bulut, T A Sulaiman and H M Baskonus Eur. Phys. J. Plus 132(459) 1 (2017)

    Google Scholar 

  22. M M A Khater, A R Seadawy and D Lu J. King Saud Univ. Sci. Accepted (2017)

  23. M Subasi and S S Sener Pasific J. Optim. 10(1) 243 (2014)

    Google Scholar 

  24. M Subasi, S S Sener and Y Sarac Comput. Math. Appl. 61 2854 (2011)

    Article  Google Scholar 

  25. S S Sener, Y Sarac and M Subasi Appl. Math. Model. 37 2623 (2013)

    Article  MathSciNet  Google Scholar 

  26. S Duran, M Askin and T A Sulaiman Int. J. Optim. Control Theories Appl. 7(3) 240 (2017)

    Article  MathSciNet  Google Scholar 

  27. A Yokus, H M Baskonus, T A Sulaiman and H Bulut Numer. Methods Partial Differ. Equs. 34(1) 211 (2017)

    Article  Google Scholar 

  28. A Ciancio Int. J. Wavelets Multire Solut. Inf. Process. 5(2) 241 (2007)

    Article  Google Scholar 

  29. A Ciancio, V Ciancio and F Farsaci U.P.B. Sci. Bull. Univ. Politeh. Buchar. Ser. A Appl. Math. Phys. 69(4) 69 (2007)

    Google Scholar 

  30. V Ciancio, A Ciancio and F Farsaci Phys. B Condens. Matter 403 3221 (2008)

    Article  ADS  Google Scholar 

  31. A Ciancio and A Quartarone U.P.B. Sci. Bull. Univ. Politeh. Buchar. Ser. A Appl. Math. Phys. 75(4) 125 (2013)

    Google Scholar 

  32. C Cattani J. Interdiscip. Math. 4(1) 35 (2001)

    Article  MathSciNet  Google Scholar 

  33. C Cattani Comput. Math. Appl. 50(8) 1191 (2005)

    Article  MathSciNet  Google Scholar 

  34. G Yel, H M Baskonus and H Bulut Opt. Quantum Electron. 49(285) 1 (2017)

    Google Scholar 

  35. H M Baskonus, G Yel and H Bulut AIP Conf. Proc. 1863(560084) 1 (2017)

    Google Scholar 

  36. S Nadeem, RU Haq and Z H Khan Appl. Nanosci. 4(5) 625 (2014)

    Article  ADS  Google Scholar 

  37. N S Akbar, S Nadeem, C Lee, Z H Khan and R U Haq J. Comput. Theor. Nanosci. 11(5) 1342 (2014)

    Article  Google Scholar 

  38. E Bas, E Panakhov and R Yilmazer TWMS J. Pure Appl. Math. 4(1) 20 (2013)

    MathSciNet  Google Scholar 

  39. E Bas and R Ozarslan J. Adv. Phys. 6(5) 529 (2017)

    Article  Google Scholar 

  40. D Avci, B B Iskender Eroglu and N Ozdemir Therm. Sci. 21(1A) 9 (2017)

    Article  Google Scholar 

  41. D Avci, B B Iskender Eroglu and N Ozdemir Therm. Sci. 21(2) 819 (2017)

    Article  Google Scholar 

  42. N Ozdemir, B B Iskender and N Yilmaz Ozgur Commun. Nonlinear Sci. Numer. Simul. 16 4698 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  43. R Haq, Z Hammouch, S T Hussain and T Mekkaoui J. Hydrog. Energy 42(24) 15925 (2017)

    Article  Google Scholar 

  44. F A Soomro, R Haq, Z H Khan and Q Zhang Eur. Phys. J. Plus 132 412 (2017)

    Article  Google Scholar 

  45. A R Seadawy Appl. Math. Lett. 25 687 (2017)

    Article  MathSciNet  Google Scholar 

  46. A R Seadawy, M Arshad, Aly R Seadawy and D Lu J. Electromagn. Waves Appl. 31 1711 (2017)

    Article  Google Scholar 

  47. D Lu, A R Seadawy and M Arshad Phys. Scr. 80 350 (2009)

    Google Scholar 

  48. F Dusunceli and E Celik Asian J. Math. Comput. Res. 15(3) 229 (2017)

    Google Scholar 

  49. M N Alam and M N Alam J. Taibah Univ. Sci. (2017). https://doi.org/10.1016/j.jtusci.2016.11.004

    Google Scholar 

  50. E Tala-Tebue, Z I Djoufack, D C Tsobgni-Fozap, A Kenfack-Jiotsa, F Kapche-Tagne and T C Kofane Chin. J. Phys. (2017). https://doi.org/10.1016/j.cjph.2017.03.004

    Google Scholar 

  51. F Ozpinar, H M Baskonus and H Bulut Entropy 17(12) 8267 (2015)

    Article  ADS  Google Scholar 

  52. H O Roshid and M A Rahman Results Phys. 4 150 (2014)

    Article  Google Scholar 

  53. A E Abdelrahman, E H M Zahran and M M A Khater Int. J. Mod. Nonlinear Theory Appl. 4 37 (2015)

    Article  Google Scholar 

  54. M G Hafez, M N Alam and M A Akbar World Appl. Sci. J. 32 2150 (2014)

    Google Scholar 

  55. H M Baskonus, F Erdogan, A Ozkul and I Asmouh ITM Web Conf. 13(01015) 1 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Celik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, E., Bulut, H. & Baskonus, H.M. Novel features of the nonlinear model arising in nano-ionic currents throughout microtubules. Indian J Phys 92, 1137–1143 (2018). https://doi.org/10.1007/s12648-018-1201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1201-9

Keywords

PACS Nos.

Navigation