Skip to main content
Log in

Relation between nanostructure parameters and ionic conductivity of CsAg2−x Tl x I3

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper reports the effect of silver ion substituted by Tl+ of different size on nanostructure and ionic conductivity of the compound CsAg2−x . The X-ray diffraction data of the samples have been analyzed using Willamson-Hall method. The peaks of X-ray profile have been determined with more accuracy using PEAKFIT program. The results imply that the lattice strain increases with increase of Tl+ cation content. The ionic conductivity enhances due to the increase in the lattice strain. Unit cell parameters have been also refined and obtained using CHEKCELL software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K Siraj Int. J. Nano Mater. Sci. 11 (2012)

    ADS  Google Scholar 

  2. H Mehrer Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Berlin Heidelberg: Springer) Vol. 155 p 475 (2007)

    Google Scholar 

  3. R A Huggins Advanced Batteries: Solid Electrolytes (New York USA: Springer) (2009)

    Google Scholar 

  4. M Hassan, M S Nawaz and Rafiuddin Radi. Eff. Def. Solids 163 558 (2008)

    Google Scholar 

  5. D A Keen J. Phys. Condens. Matt. 14 R819 (2002)

    Article  ADS  Google Scholar 

  6. R Rafiuddin and M Hassan Solid State Commun. 144 293 (2007)

    Article  ADS  Google Scholar 

  7. E Melagiriyappa, M Veena, A Somashekarappa, G J Shankaramurthy and H S Jayanna Indian. J. Phys. 88 795 (2014)

    Article  ADS  Google Scholar 

  8. S W Anwane Adv. Mater. Lett. 3 204 (2012)

    Article  Google Scholar 

  9. S Adams and J Swenson Phys. Rev. Let. 84 4144 (2000)

    Article  ADS  Google Scholar 

  10. S Hull Rep. Prog. Phys. 67 1233 (2004)

    Article  ADS  Google Scholar 

  11. M Aniya Phys. Proce. 44 25 (2013)

    Article  ADS  Google Scholar 

  12. E Barsoukov and J R Macdonald Impedance spectroscopy: theory, experiment and applications Second Edition (New Jersey USA: John Wiley & Sons, Inc Hoboken) (2005)

    Book  Google Scholar 

  13. S Hull and P Berastegui J. Solid State. Chem. 177 3156 (2004)

    Article  ADS  Google Scholar 

  14. M Morcrette et al. Elec. Acta 47 3137 (2002)

  15. A R West Solid State Chemistry and its Applications 2nd Edition (Avenel, NJ, USA: Wiley) (2014)

    Google Scholar 

  16. T Ungár Scr. Mater. 51 777 (2004)

    Article  Google Scholar 

  17. Z Zhang, F Zhou, E J Lavernia Metall. Mater. Trans. A 34 1349 (2003)

    Article  Google Scholar 

  18. D Balzar Defect and Microstructure Analysis by Diffraction (New York, USA: Oxford) (1999)

    Google Scholar 

  19. D B Wiles and R A Young J. Appl. Crystallo. 14 149 (1981)

    Article  Google Scholar 

  20. C. Dong J. Appl. Crystallo. 32 838 (1999)

    Article  Google Scholar 

  21. S J Chipera and D L Bish J. Appl. Crystallo. 35 744 (2002)

    Article  Google Scholar 

  22. R Chen, K A Jakes and D W Foreman J. Appl. Poly. Sci. 93 2019 (2004)

    Article  Google Scholar 

  23. S O Mohammed and M Hassan Radi. Eff. Def. Solids 168 121 (2013)

    Article  Google Scholar 

  24. J Laugier and B Bochu CHECKCELL, LMGP Suite of Programs for the Interpretation of X-ray Experiments, Ensp/Laboratoire des Materiaux et du Genie, Physique, Saint Martin D’heres, France, 2004. http://www.ccp14.ac.in/tutorial/lmgp/. (Last accessed 19 September 2011)

  25. P Scherrer Göt. Nachr. Ges. 2 98 (1918)

    Google Scholar 

  26. G K Williamson and W H Hall Acta Metallu. 1 22 (1953)

    Article  Google Scholar 

  27. M Sreejith Nair and A Ahmad J. Phys. Chem. Solid 58 331 (1997)

    Article  Google Scholar 

  28. K Singh, S M Pande, S W Anwane and S S Bhoga Appl. Phys. A Mater. Sci. Proce. 66 205 (1998)

    Article  ADS  Google Scholar 

  29. A Rahman and P Vashishta Physiscs of Superionic Conductors and Electrode Materials (New York, USA: Plenum) (1983)

    Google Scholar 

  30. A K Ivanov-Shitz Rev. Crystallo. Rep. 52 302 (2007)

    Article  ADS  Google Scholar 

  31. H Mändar, J Felsche, V Mikli and T Vajakas J. Appl. Crystallo. 32 345 (1999)

    Article  Google Scholar 

  32. Y Wang, L Huang, H Haiping and M Li Physica B 325 357 (2003)

    Article  ADS  Google Scholar 

  33. M G Bellino, D G Lamas and N E Walsöe de Reca Adv. Funct. Mater. 16 107 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Samir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samir, O.M., Hassan, M. Relation between nanostructure parameters and ionic conductivity of CsAg2−x Tl x I3 . Indian J Phys 89, 937–941 (2015). https://doi.org/10.1007/s12648-015-0669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0669-9

Keywords

PACS Nos.

Navigation