Skip to main content
Log in

Effect of axial preloading on mechanical behavior during the free-end torsion of an extruded AZ31 magnesium alloy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Large plastic deformation commonly occurs during the practical forming process in industries. Compared with uniaxial tension/compression, torsion is a more effective approach to investigate mechanical behavior under large deformation. The response of the large strain torsion of magnesium alloy is sensitive to the initial texture and twinning. Therefore, an extruded AZ31 alloy was pre-stressed in tension and compression to introduce dislocations and twins in the current work. Subsequently, torsion tests were conducted to clarify the effects of twinning and dislocation on subsequent deformation responses. The corresponding microstructure and deformation mechanisms were explored on the basis of viscoplastic self-consistent (VPSC) modeling. The experimental observations on stress-strain responses and pole figures were captured by simulation work. It was found that twins make less contribution to plastic deformation, which results in small change in texture direction under pure torsion and torsion after pretension. The activity of the slip/twin system and the mechanical properties are affected by different initial textures and active conditions of the system. Moreover, the stress state during combined tension-torsion loading benefits the reduction of texture intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705.

    Article  CAS  Google Scholar 

  2. B. Shi, C. Yang, Y. Peng, F. Zhang and F. Pan, Anisotropy of wrought magnesium alloys: A focused overview, J. Magnes. Alloys, (2022), DOI: https://doi.org/10.1016/j.jma.2022.03.006

  3. M. Rakshith and P. Seenuvasaperuma, Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy, J. Magnes. Alloys, 9(2021), No. 5, p. 1692.

    Article  Google Scholar 

  4. Z.R. Zeng, M.Z. Bian, S.W. Xu, W.N. Tang, C. Davies, N. Birbilis, and J.F. Nie, Optimisation of alloy composition for highly-formable magnesium shee, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1388.

    Google Scholar 

  5. B.D. Shi and J. Mosler, On the macroscopic description of yield surface evolution by means of distortional hardening models: Application to magnesium, Int. J. Plast., 44(2013), p. 1.

    Article  CAS  Google Scholar 

  6. B.D. Shi, A. Bartels, and J. Mosler, On the thermodynamically consistent modeling of distortional hardening: A novel generalized framework, Int. J. Plast., 63(2014), p. 170.

    Article  Google Scholar 

  7. B.D. Shi, Y. Peng, and F.S. Pan, A generalized thermodynamically consistent distortional hardening model for Mg alloys, Int. J. Plast., 74(2015), p. 158.

    Article  CAS  Google Scholar 

  8. G.G. Zhu, C. Yang, G. Shen, Y. Peng, and B.D. Shi, The asymmetric pre-yielding behaviour during tension and compression for a rolled AZ31 Mg alloy, Int. J. Mater. Form., 15(2022), No. 3, art. No. 26.

  9. T. Hama, A. Kobuki, and H. Takuda, Crystal-plasticity finite-element analysis of anisotropic deformation behavior in a commercially pure titanium Grade 1 sheet, Int. J. Plast., 91(2017), p. 77.

    Article  CAS  Google Scholar 

  10. J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724.

    Article  CAS  Google Scholar 

  11. J.F. Song, J. Chen, X.M. Xiong, X.D. Peng, D.L. Chen and F.S. Pan, Research advances of magnesium and magnesium alloys worldwide in 2021, J. Magnes. Alloys, (2022), DOI: https://doi.org/10.1016/j.jma.2022.04.001

  12. X.P. Zhang, H.X. Wang, L.P. Bian, S.X. Zhang, Y.P. Zhuang, W.L. Cheng, and W. Liang, Microstructure evolution and mechanical properties of Mg−9Al−1Si−1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1966.

    Article  CAS  Google Scholar 

  13. G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567.

    Article  Google Scholar 

  14. Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30.

    Article  CAS  Google Scholar 

  15. S. Biswas, B. Beausir, L.S. Toth, and S. Suwas, Evolution of texture and microstructure during hot torsion of a magnesium alloy, Acta Mater., 61(2013), No. 14, p. 5263.

    Article  CAS  Google Scholar 

  16. B. Benoît, L.S. Tóth, Q. Fathallah, and K.W. Neale, Texture and mechanical behavior of magnesium during free-end torsion, J. Eng. Mater. Technol., 131(2009), No. 1, art. No. 011108.

  17. M.R. Barnett, Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31, J. Light Met., 1(2001), No. 3, p. 167.

    Article  Google Scholar 

  18. S.R. Agnew and Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plast., 21(2005), No. 6, p. 1161.

    Article  CAS  Google Scholar 

  19. M.R. Barnett, M.D. Nave, and A. Ghaderi, Yield point elongation due to twinning in a magnesium alloy, Acta Mater., 60(2012), No. 4, p. 1433.

    Article  CAS  Google Scholar 

  20. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast., 23(2007), No. 1, p. 44.

    Article  CAS  Google Scholar 

  21. G. Proust, C.N. Tomé, and G.C. Kaschner, Modeling texture, twinning and hardening evolution during deformation of hexagonal materials, Acta Mater., 55(2007), No. 6, p. 2137.

    Article  CAS  Google Scholar 

  22. P.D. Wu, X.Q. Guo, H. Qiao, S.R. Agnew, D.J. Lloyd, and J.D. Embury, On the rapid hardening and exhaustion of twinning in magnesium alloy, Acta Mater., 122(2017), p. 369.

    Article  CAS  Google Scholar 

  23. B.B. Yang, C.Y. Shi, X.J. Ye, J.W. Teng, R.L. Lai, Y.J. Cui, D.K. Guan, H.W. Cui, Y.P. Li, and A. Chiba, Underlying slip/twinning activities of Mg−xGd alloys investigated by modified lattice rotation analysis, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.06.008

  24. P.P. Indurkar, S. Baweja, R. Perez, and S.P. Joshi, Predicting textural variability effects in the anisotropic plasticity and stability of hexagonal metals: Application to magnesium and its alloys, Int. J. Plast., 132(2020), art. No. 102762.

  25. D. Sarker and D.L. Chen, Texture transformation in an extruded magnesium alloy under pressure, Mater. Sci. Eng. A, 582(2013), p. 63.

    Article  CAS  Google Scholar 

  26. F.A. Mirza, D.L. Chen, D.J. Li, and X.Q. Zeng, Effect of strain ratio on cyclic deformation behavior of a rare-earth containing extruded magnesium alloy, Mater. Sci. Eng. A, 588(2013), p. 250.

    Article  CAS  Google Scholar 

  27. B. Clausen, C.N. Tomé, D.W. Brown, and S.R. Agnew, Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg, Acta Mater., 56(2008), No. 11, p. 2456.

    Article  CAS  Google Scholar 

  28. S.G. Hong, S.H. Park, and C.S. Lee, Role of \(\{10\bar{1}0\}\) twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy, Acta Mater., 58(2010), No. 18, p. 5873.

    Article  CAS  Google Scholar 

  29. P.D. Wu, H. Wang, and K.W. Neale, On the large strain torsion of hcp polycrystals, Int. J. Appl. Mech., 4(2012), No. 3, p. 1250024.

    Article  Google Scholar 

  30. L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, and P.K. Liaw, Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A, Acta Mater., 56(2008), No. 4, p. 688.

    Article  CAS  Google Scholar 

  31. C. Yang, B.D. Shi, Y. Peng, and F.S. Pan, Transition from convex to concave of equal plastic work contours for wrought magnesium alloy under multi-axial loading, Int. J. Solids Struct., 150(2018), p. 117.

    Article  CAS  Google Scholar 

  32. C. Yang, G.G. Zhu, H. Zhao, Y. Peng, and B.D. Shi, The roles of stress state and pre-straining on Swift effect for an extruded AZ31 Mg alloy, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.08.003

  33. X.D. Zhang, S.M. Li, X.Q. Guo, H.M. Wang, Q. Yu, and P.D. Wu, Effects of texture and twinning on the torsional behavior of magnesium alloy solid rod: A crystal plasticity approach in comparison with uniaxial tension/compression, Int. J. Mech. Sci., 191(2021), art. No. 106062.

  34. C.M.A. Iftikhar and A.S. Khan, The evolution of yield loci with finite plastic deformation along proportional and non-proportional loading paths in an annealed extruded AZ31 magnesium alloy, Int. J. Plast., 143(2021), art. No. 103007.

  35. B.D. Shi, Y. Peng, C. Yang, F.S. Pan, R.J. Cheng, and Q.M. Peng, Loading path dependent distortional hardening of Mg alloys: Experimental investigation and constitutive modeling, Int. J. Plast., 90(2017), p. 76.

    Article  CAS  Google Scholar 

  36. B.C. Suh, J.H. Kim, J.H. Bae, J.H. Hwang, M.S. Shim, and N.J. Kim, Effect of Sn addition on the microstructure and deformation behavior of Mg−3Al alloy, Acta Mater., 124(2017), p. 268.

    Article  CAS  Google Scholar 

  37. A. Tripathi, S.V.S.N. Murty, and P.R. Narayanan, Microstructure and texture evolution in AZ31 magnesium alloy during caliber rolling at different temperatures, J. Magnes. Alloys, 5(2017), No. 3, p. 340.

    Article  CAS  Google Scholar 

  38. A. Chapuis and Q. Liu, Modeling strain rate sensitivity and high temperature deformation of Mg−3Al−1Zn alloy, J. Magnes. Alloys, 7(2019), No. 3, p. 433.

    Article  CAS  Google Scholar 

  39. S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, and J. Homeyer, Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading, Acta Mater., 54(2006), No. 2, p. 549.

    Article  CAS  Google Scholar 

  40. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod, Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions, Int. J. Plast., 68(2015), p. 1.

    Article  CAS  Google Scholar 

  41. Y.L. Xu, Y.D. Huang, Y.Y. Wang, W.M. Gan, S.W. Wang, E. Maawad, N. Schell, and N. Hort, Investigations on the tensile deformation of pure Mg and Mg−15Gd alloy by in situ X-ray synchrotron radiation and visco-plastic self-consistent modeling, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.06.011

  42. L. Hu, H.Y. Lv, L.X. Shi, Y. Chen, Q. Chen, T. Zhou, M.G. Li, and M.B. Yang, Research on deformation mechanism of AZ31 magnesium alloy sheet with non-basal texture during uniaxial tension at room temperature: A visco-plastic self-consistent analysis, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.10116/j.jma.2020.12.008

  43. J. Kuang, Y.Q. Zhang, X.P. Du, J.Y. Zhang, G. Liu, and J. Sun, On the strengthening and slip activity of Mg−3Al−1Zn alloy with pre-induced \(\{10\bar{1}2\}\) twins, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.07.016

  44. H. Qiao, X.Q. Guo, S.G. Hong, and P.D. Wu, Modeling of \(\{10\bar{1}2\}\)-\(\{10\bar{1}2\}\) secondary twinning in pre-compressed Mg alloy AZ31, J. Alloys Compd., 725(2017), p. 96.

    Article  CAS  Google Scholar 

  45. A. Maldar, L.Y. Wang, G.M. Zhu, and X.Q. Zeng, Investigation of the alloying effect on deformation behavior in Mg by visco-plastic self-consistent modeling, J. Magnes. Alloys, 8(2020), No. 1, p. 210.

    Article  CAS  Google Scholar 

  46. Y. Cheng, A. Chapuis, Y.C. Xin, Q. Liu, and P.D. Wu, Mg−3Al−1Zn alloy deformed along different strain paths: Role of latent hardening, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.07.025

  47. R. Hielscher and H. Schaeben, A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallogr., 41(2008), 6, p. 1024.

    Article  CAS  Google Scholar 

  48. D.W. Brown, J.D. Almer, B. Clausen, P.L. Mosbrucker, T.A. Sisneros, and S.C. Vogel, Twinning and de-twinning in beryllium during strain path changes, Mater. Sci. Eng. A, 559(2013), p. 29.

    Article  CAS  Google Scholar 

  49. Y.J. Wang, Y. Zhang, and H.T. Jiang, Tension-compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure, Int. J. Miner. Metall. Mater., (2021). DOI: https://doi.org/10.1007/s12613-021-2388-x

  50. D. Sarker and D.L. Chen, Detwinning and strain hardening of an extruded magnesium alloy during compression, Scripta Mater., 67(2012), No. 2, p. 165.

    Article  CAS  Google Scholar 

  51. J. Koike and R. Ohyama, Geometrical criterion for the activation of prismatic slip in AZ61 Mg alloy sheets deformed at room temperature, Acta Mater., 53(2005), No. 7, p. 1963.

    Article  CAS  Google Scholar 

  52. C.N. Tomé, R.A. Lebensohn, and U.F. Kocks, A model for texture development dominated by deformation twinning: Application to zirconium alloys, Acta Metall. Mater., 39(1991), No. 11, p. 2667.

    Article  Google Scholar 

  53. X.Q. Guo, W. Wu, P.D. Wu, H. Qiao, K. An, and P.K. Liaw, On the Swift effect and twinning in a rolled magnesium alloy under free-end torsion, Scripta Mater., 69(2013), No. 4, p. 319.

    Article  CAS  Google Scholar 

  54. C. Yang, Y.B. Mei, D. Meng, G.G. Zhu, S.W. Liu, Y. Peng, L. Wu, C.Y. Zha, and B.D. Shi, Mechanical anisotropy induced by strain path change for AZ31 Mg alloy sheet, Metals, 10(2020), No. 8, art. No. 1409.

Download references

Acknowledgements

This work was financially supported by the projects by the National Natural Science Foundation of China (No. 51771166), the Hebei Natural Science Foundation, China (Nos. E2019203452 and E2021203011), the central government guiding local science and technology development (No. 216Z1001G), the talent project of Human Resources and Social Security Department of Hebei Province, China (No. A202002002), the key project of the Department of Education of Hebei Province (No. ZD2021107), the Cultivation Project for Basic Research and Innovation of Yanshan University (No. 2021LGZD002), the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, China (No. P2020-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baodong Shi.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Meng, D., Fu, Z. et al. Effect of axial preloading on mechanical behavior during the free-end torsion of an extruded AZ31 magnesium alloy. Int J Miner Metall Mater 29, 1351–1360 (2022). https://doi.org/10.1007/s12613-022-2417-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2417-4

Keywords

Navigation