Skip to main content
Log in

Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading, and research on the cyclic plasticity is fundamental to investigate the corresponding fatigue failure. Thus, this work reviews the progress in the cyclic plasticity of Mg alloys. First, the existing macroscopic and microscopic experimental results of Mg alloys are summarized. Then, corresponding macroscopic phenomenological constitutive models and crystal plasticity-based models are reviewed. Finally, some conclusions and recommended topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Aghion, B. Bronfin, and D. Eliezer, The role of the magnesium industry in protecting the environment, J. Mater. Process. Technol., 117(2001), No. 3, p. 381.

    Article  CAS  Google Scholar 

  2. D. Eliezer, E. Aghion, and F.H. (Sam) Froes, Magnesium science, technology and applications, Adv. Perform. Mater., 5(1998), No. 3, p. 201.

    Article  CAS  Google Scholar 

  3. B.L. Mordike and T. Ebert, Magnesium: Properties—applications—potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.

    Article  Google Scholar 

  4. T.M. Pollock, Weight loss with magnesium alloys, Science, 328(2010), No. 5981, p. 986.

    Article  CAS  Google Scholar 

  5. E.A. Ball and P.B. Prangnell, Tensile-compressive yield assymetries in high strength wrought magnesium alloys, Scr. Metall. Mater., 31(1994), No. 2, p. 111.

    Article  CAS  Google Scholar 

  6. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn, Acta Mater., 52(2004), No. 17, p. 5093.

    Article  CAS  Google Scholar 

  7. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast., 23(2007), No. 1, p. 44.

    Article  CAS  Google Scholar 

  8. J.P. Nobre, U. Noster, M. Kornmeier, A.M. Dias, and B. Scholtes, Deformation asymmetry of AZ31 wrought magnesium alloy, Key Eng. Mater., 230–232(2002), p. 267.

    Article  Google Scholar 

  9. Y. Xiong, Q. Yu, and Y.Y. Jiang, An experimental study of cyclic plastic deformation of extruded ZK60 magnesium alloy under uniaxial loading at room temperature, Int. J. Plast., 53(2014), p. 107.

    Article  CAS  Google Scholar 

  10. H. Li, G.Z. Kang, C. Yu, and Y.J. Liu, Experimental investigation on temperature-dependent uniaxial ratchetting of AZ31B magnesium alloy, Int. J. Fatigue, 120(2019), p. 33.

    Article  CAS  Google Scholar 

  11. A. Gryguc, S.K. Shaha, S.B. Behravesh, H. Jahed, M. Wells, B. Williams, and X. Su, Monotonic and cyclic behaviour of cast and cast-forged AZ80 Mg, Int. J. Fatigue, 104(2017), p. 136.

    Article  CAS  Google Scholar 

  12. J. Albinmousa, H. Jahed, and S. Lambert, Cyclic behaviour of wrought magnesium alloy under multiaxial load, Int. J. Fatigue, 33(2011), No. 8, p. 1127.

    Article  CAS  Google Scholar 

  13. J. Albinmousa, H. Jahed, and S. Lambert, Cyclic axial and cyclic torsional behaviour of extruded AZ31B magnesium alloy, Int. J. Fatigue, 33(2011), No. 11, p. 1403.

    Article  CAS  Google Scholar 

  14. S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy, Metall. Mater. Trans. A, 39(2008), No. 12, p. 3014.

    Article  CAS  Google Scholar 

  15. C. Chen, T.M. Liu, C.L. Lv, L.W. Lu, and D.Z. Luo, Study on cyclic deformation behavior of extruded Mg-3Al-1Zn alloy, Mater. Sci. Eng. A, 539(2012), p. 223.

    Article  CAS  Google Scholar 

  16. L.J. Chen, C.Y. Wang, W. Wu, Z. Liu, G.M. Stoica, L. Wu, and P.K. Liaw, Low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy, Metall. Mater. Trans. A, 38(2007), No. 13, p. 2235.

    Article  CAS  Google Scholar 

  17. T. Hama, Y. Kariyazaki, N. Hosokawa, H. Fujimoto, and H. Takuda, Work-hardening behaviors of magnesium alloy sheet during in-plane cyclic loading, Mater. Sci. Eng. A, 551(2012), p. 209.

    Article  CAS  Google Scholar 

  18. S. Dong, Q. Yu, Y.Y. Jiang, J. Dong, F.H. Wang, L. Jin, and W.J. Ding, Characteristic cyclic plastic deformation in ZK60 magnesium alloy, Int. J. Plast., 91(2017), p. 25.

    Article  CAS  Google Scholar 

  19. Y. Xiong, Q. Yu, and Y.Y. Jiang, Cyclic deformation and fatigue of extruded AZ31B magnesium alloy under different strain ratios, Mater. Sci. Eng. A, 649(2016), p. 93.

    Article  CAS  Google Scholar 

  20. A.H. Pahlevanpour, S.M.H. Karparvarfard, S.K. Shaha, S.B. Behravesh, S. Adibnazari, and H. Jahed, Anisotropy in the quasi-static and cyclic behavior of ZK60 extrusion: Characterization and fatigue modeling, Mater. Des., 160(2018), p. 936.

    Article  CAS  Google Scholar 

  21. C. Wang, T.J. Luo, J.X. Zhou, and Y.S. Yang, Anisotropic cyclic deformation behavior of extruded ZA81M magnesium alloy, Int. J. Fatigue, 96(2017), p. 178.

    Article  CAS  Google Scholar 

  22. S.M.H. Karparvarfard, S.K. Shaha, S.B. Behravesh, H. Jahed, and B.W. Williams, Fatigue characteristics and modeling of cast and cast-forged ZK60 magnesium alloy, Int. J. Fatigue, 118(2019), p. 282.

    Article  CAS  Google Scholar 

  23. S.M.A.K. Mohammed, D.J. Li, X.Q. Zeng, and D.L. Chen, Cyclic deformation behavior of a high zinc-containing cast magnesium alloy, Int. J. Fatigue, 125(2019), p. 1.

    Article  CAS  Google Scholar 

  24. K. Máthis, P. Beran, J. Čapek, and P. Lukáš, In-situ neutron diffraction and acoustic emission investigation of twinning activity in magnesium, J. Phys. Conf. Ser., 340(2012), art. No. 12096.

  25. S.H. Park, J.H. Lee, B.G. Moon, and B.S. You, Tension-compression yield asymmetry in as-cast magnesium alloy, J. Alloys Compd., 617(2014), p. 277.

    Article  CAS  Google Scholar 

  26. S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy, Mater. Sci. Eng. A, 517(2009), No. 1–2, p. 334.

    Article  CAS  Google Scholar 

  27. C. Wang, T.J. Luo, and Y.S. Yang, Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates, J. Magnesium Alloys, 4(2016), No. 3, p. 181.

    Article  CAS  Google Scholar 

  28. G. Chen, J.W. Gao, Y. Cui, H. Gao, X. Guo, and S.Z. Wu, Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT, J. Alloys Compd., 735(2018), p. 536.

    Article  CAS  Google Scholar 

  29. J.H. Kim, D. Kim, Y.S. Lee, M.G. Lee, K. Chung, H.Y. Kim, and R.H. Wagoner, A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets, Int. J. Plast., 50(2013), p. 66.

    Article  CAS  Google Scholar 

  30. K. Piao, J.K. Lee, J.H. Kim, H.Y. Kim, K. Chung, F. Barlat, and R.H. Wagoner, A sheet tension/compression test for elevated temperature, Int. J. Plast., 38(2012), p. 27.

    Article  CAS  Google Scholar 

  31. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet, Twinning and texture development in two Mg alloys subjected to loading along three different strain paths, Acta Mater., 55(2007), No. 11, p. 3899.

    Article  CAS  Google Scholar 

  32. F.H. Wang, M.L. Feng, Y.Y. Jiang, J. Dong, and Z.Y. Zhang, Cyclic shear deformation and fatigue of extruded Mg-Gd-Y magnesium alloy, J. Mater. Sci. Technol., 39(2020), p. 74.

    Article  Google Scholar 

  33. J.X. Zhang, Q. Yu, Y.Y. Jiang, and Q.Z. Li, An experimental study of cyclic deformation of extruded AZ61A magnesium alloy, Int. J. Plast., 27(2011), No. 5, p. 768.

    Article  CAS  Google Scholar 

  34. Q. Yu, J.X. Zhang, Y.Y. Jiang, and Q.Z. Li, Multiaxial fatigue of extruded AZ61A magnesium alloy, Int. J. Fatigue, 33(2011), No. 3, p. 437.

    Article  CAS  Google Scholar 

  35. H. Li, G.Z. Kang, Y.J Liu, and H. Jiang, Non-proportionally multiaxial cyclic deformation of AZ31 magnesium alloy: Experimental observations, Mater. Sci. Eng. A, 671(2016), p. 70.

    Article  CAS  Google Scholar 

  36. A.A. Roostaei and H. Jahed, Multiaxial cyclic behaviour and fatigue modelling of AM30 Mg alloy extrusion, Int. J. Fatigue, 97(2017), p. 150.

    Article  CAS  Google Scholar 

  37. A. Gryguć, S.B. Behravesh, S.K. Shaha, H. Jahed, M. Wells, B. Williams, and X. Su, Multiaxial cyclic behaviour of extruded and forged AZ80 Mg alloy, Int. J. Fatigue, 127(2019), p. 324.

    Article  CAS  Google Scholar 

  38. J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plast., 24(2008), No. 10, p. 1642.

    Article  CAS  Google Scholar 

  39. G.Z. Kang, Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application, Int. J. Fatigue, 30(2008), No. 8, p. 1448.

    Article  CAS  Google Scholar 

  40. O. Nobutada, Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity, Appl. Mech. Rev., 43(1990), No. 11, p. 283.

    Article  Google Scholar 

  41. G.Z. Kang, Y. Chao, Y.J. Liu, and G.F. Quan, Uniaxial ratchetting of extruded AZ31 magnesium alloy: Effect of mean stress, Mater. Sci. Eng. A, 607(2014), p. 318.

    Article  CAS  Google Scholar 

  42. Z.F. Yan, D.H. Wang, X.L. He, W.X. Wang, H.X. Zhang, P. Dong, C.H. Li, Y.L. Li, J. Zhou, Z. Liu, and L.Y. Sun, Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect, Mater. Sci. Eng. A, 723(2018), p. 212.

    Article  CAS  Google Scholar 

  43. Y.C. Lin, Z.H. Liu, X.M. Chen, and J. Chen, Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress-controlled loadings, Mater. Sci. Eng. A, 573(2013), p. 234.

    Article  CAS  Google Scholar 

  44. Y.C. Lin, X.M. Chen, and G. Chen, Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation, J. Alloys Compd., 509(2011), No. 24, p. 6838.

    Article  CAS  Google Scholar 

  45. L. Meng, S. Hallais, A. Tanguy, W.F. Chen, and M.L. Feng, The effect of stress rate on ratchetting behavior of rolled AZ31B magnesium alloy at 393 K and room temperature, Mater. Res. Express, 6(2019), No. 8, art. No. 086510.

  46. U. Noster and B. Scholtes, Cyclic deformation behavior of magnesium alloys AZ31 and AZ91 in the temperature range 20–300°C, Mater. Sci. Forum., 419–422(2003), p. 103.

    Article  Google Scholar 

  47. F. Castro and Y.Y. Jiang, Fatigue of extruded AZ31B magnesium alloy under stress- and strain-controlled conditions including step loading, Mech. Mater., 108(2017), p. 77.

    Article  Google Scholar 

  48. M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A, 12(1981), No. 3, p. 409.

    Article  CAS  Google Scholar 

  49. A. Couret and D. Caillard, An in situ study of prismatic glide in magnesium—I. The rate controlling mechanism, Acta Metall., 33(1985), No. 8, p. 1447.

    Article  CAS  Google Scholar 

  50. R.E. Reed-Hill and W.D. Robertson, Deformation of magnesium single crystals by nonbasal slip, JOM, 9(1957), No. 4, p. 496.

    Article  CAS  Google Scholar 

  51. P.J.F. Stohr and J.P. Poirier, Etude en microscopie electronique du glissement pyramidal \(\{11\bar{2}2\}\langle11\bar{2}3\rangle\) dans le magnesium, Philos. Mag., 25(1972), No. 6, p. 1313.

    Article  CAS  Google Scholar 

  52. T. Obara, H. Yoshinga, and S. Morozumi, \(\{11\bar{2}2\}\langle11\bar{2}3\rangle\) Slip system in magnesium, Acta Metall., 21(1973), No. 7, p. 845.

    Article  CAS  Google Scholar 

  53. S. Ando, M. Tanaka, and H. Tonda, Pyramidal slip in magnesium alloy single crystals, Mater. Sci. Forum., 419–422(2003), p. 87.

    Article  Google Scholar 

  54. E. Lilleodden, Microcompression study of Mg (0001) single crystal, Scripta Mater., 62(2010), No. 8, p. 532.

    Article  CAS  Google Scholar 

  55. C.M. Byer, B. Li, B.Y. Cao, and K.T. Ramesh, Microcompression of single-crystal magnesium, Scripta Mater., 62(2010), No. 8, p. 536.

    Article  CAS  Google Scholar 

  56. K.Y. Xie, Z. Alam, A. Caffee, and K.J. Hemker, Pyramidal I slip in c-axis compressed Mg single crystals, Scripta Mater., 112(2016), p. 75.

    Article  CAS  Google Scholar 

  57. C. Guillemer, M. Clavel, and G. Cailletaud, Cyclic behavior of extruded magnesium: Experimental, microstructural and numerical approach, Int. J. Plast., 27(2011), No. 12, p. 2068.

    Article  CAS  Google Scholar 

  58. W. Wu, Y.F. Gao, N. Li, C.M. Parish, W.J. Liu, P.K. Liaw, and K. An, Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys, Acta Mater., 121(2016), p. 15.

    Article  CAS  Google Scholar 

  59. L. Lu, B.X. Bie, Q.H. Li, T. Sun, K. Fezzaa, X.L. Gong, and S.N. Luo, Multiscale measurements on temperature-dependent deformation of a textured magnesium alloy with synchrotron x-ray imaging and diffraction, Acta Mater., 132(2017), p. 389.

    Article  CAS  Google Scholar 

  60. L. Lu, J.W. Huang, D. Fan, B.X. Bie, T. Sun, K. Fezzaa, X.L. Gong, and S.N. Luo, Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: A study with simultaneous in situ synchrotron x-ray imaging and diffraction, Acta Mater., 120(2016), p. 86.

    Article  CAS  Google Scholar 

  61. S. Dong, Q. Yu, Y.Y. Jiang, J. Dong, F.H. Wang, and W.J. Ding, Electron backscatter diffraction observations of twinning-detwinning evolution in a magnesium alloy subjected to large strain amplitude cyclic loading, Mater. Des., 65(2015), p. 762.

    Article  CAS  Google Scholar 

  62. S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, and G.Y. Li, The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy, Mater. Sci. Eng. A, 494(2008), No. 1–2, p. 397.

    Article  CAS  Google Scholar 

  63. Q. Yu, J. Wang, Y.Y. Jiang, R.J. McCabe, N. Li, and C.N. Tomé, Twin-twin interactions in magnesium, Acta Mater., 77(2014), p. 28.

    Article  CAS  Google Scholar 

  64. Q. Sun, T. Xia, L. Tan, J. Tu, M. Zhang, M.H. Zhu, and X.Y. Zhang, Influence of \(\{10\bar{1}2\}\) twin characteristics on detwinning in Mg-3Al-1Zn alloy, Mater. Sci. Eng. A, 735(2018), p. 243.

    Article  CAS  Google Scholar 

  65. L. Wu, S.R. Agnew, D.W. Brown, G.M. Stoica, B. Clausen, A. Jain, D.E. Fielden, and P.K. Liaw, Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A, Acta Mater., 56(2008), No. 14, p. 3699.

    Article  CAS  Google Scholar 

  66. D. Sarker, J. Friedman, and D.L. Chen, Influence of pre-strain on de-twinning activity in an extruded AM30 magnesium alloy, Mater. Sci. Eng. A, 605(2014), p. 73.

    Article  CAS  Google Scholar 

  67. B.M. Morrow, R.J. McCabe, E.K. Cerreta, and C.N. Tomé, In-situ TEM observation of twinning and detwinning during cyclic loading in Mg, Metall. Mater. Trans. A, 45(2013), No. 1, p. 36.

    Article  CAS  Google Scholar 

  68. L.C. Lv, Y.C. Xin, H.H. Yu, R. Hong, and Q. Liu, The role of dislocations in strain hardening of an extension twinning predominant deformation, Mater. Sci. Eng. A, 636(2015), p. 389.

    Article  CAS  Google Scholar 

  69. Q. Ma, H. El Kadiri, A.L. Oppedal, J.C. Baird, B. Li, M.F. Horstemeyer, and S.C. Vogel, Twinning effects in a rod-textured AM30 Magnesium alloy, Int. J. Plast., 29(2012), p. 60.

    Article  CAS  Google Scholar 

  70. S. Dong, Y.Y. Jiang, J. Dong, F.H. Wang, and W.J. Ding, Cyclic deformation and fatigue of extruded ZK60 magnesium alloy with aging effects, Mater. Sci. Eng. A, 615(2014), p. 262.

    Article  CAS  Google Scholar 

  71. P. Chen, B. Li, D. Culbertson, and Y.Y. Jiang, Negligible effect of twin-slip interaction on hardening in deformation of a Mg-3Al-1Zn alloy, Mater. Sci. Eng. A, 729(2018), p. 285.

    Article  CAS  Google Scholar 

  72. H.H. Yu, Y.C. Xin, Y. Cheng, B. Guan, M.Y. Wang, and Q. Liu, The different hardening effects of tension twins on basal slip and prismatic slip in Mg alloys, Mater. Sci. Eng. A, 700(2017), p. 695.

    Article  CAS  Google Scholar 

  73. J. Jeong, M. Alfreider, R. Konetschnik, D. Kiener, and S.H. Oh, In-situ TEM observation of \(\{10\bar{1}2\}\) twin-dominated deformation of Mg pillars: Twinning mechanism, size effects and rate dependency, Acta Mater., 158(2018), p. 407.

    Article  CAS  Google Scholar 

  74. M.H. Yoo, Interaction of slip dislocations with twins in hcp metals, Trans. Metall. Soc. AIME, 245(1969), p. 2051.

    CAS  Google Scholar 

  75. F.L. Wang and S.R. Agnew, Dislocation transmutation by tension twinning in magnesium alloy AZ31, Int. J. Plast., 81(2016), p. 63.

    Article  CAS  Google Scholar 

  76. F.L. Wang, C.D. Barrett, R.J. McCabe, H. El Kadiri, L. Capolungo, and S.R. Agnew, Dislocation induced twin growth and formation of basal stacking faults in \(\{10\bar{1}2\}\) twins in pure Mg, Acta Mater., 165(2019), p. 471.

    Article  CAS  Google Scholar 

  77. F. Wang, K. Hazeli, K.D. Molodov, C.D. Barrett, T. Al-Samman, D.A. Molodov, A. Kontsos, K.T. Ramesh, H. El Kadiri, and S.R. Agnew, Characteristic dislocation substructure in \(\{10\bar{1}2\}\) twins in hexagonal metals, Scripta Mater., 143(2018), p. 81.

    Article  CAS  Google Scholar 

  78. Y. Chino, K. Kimura, and M. Mabuchi, Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy, Mater. Sci. Eng. A, 486(2008), No. 1–2, p. 481.

    Article  CAS  Google Scholar 

  79. C.F. Gu, L.S. Toth, and M. Hoffman, Twinning effects in a polycrystalline magnesium alloy under cyclic deformation, Acta Mater., 62(2014), p. 212.

    Article  CAS  Google Scholar 

  80. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod, Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions, Int. J. Plast., 68(2015), p. 1.

    Article  CAS  Google Scholar 

  81. K.D. Molodov, T. Al-Samman, and D.A. Molodov, Profuse slip transmission across twin boundaries in magnesium, Acta Mater., 124(2017), p. 397.

    Article  CAS  Google Scholar 

  82. D.F. Shi, T.M. Liu, T.Y. Wang, D.W. Hou, S.Q. Zhao, and S. Hussain, \(\{10\bar{1}2\}\) Twins across twin boundaries traced by in situ EBSD, J. Alloys Compd., 690(2017), p. 699.

    Article  CAS  Google Scholar 

  83. M. Zecevic, I.J. Beyerlein, and M. Knezevic, Activity of pyramidal I and II <c+a> slip in Mg alloys as revealed by texture development, J. Mech. Phys. Solids, 111(2018), p. 290.

    Article  CAS  Google Scholar 

  84. N.T. Nguyen, M.G. Lee, J.H. Kim, and H.Y. Kim, A practical constitutive model for AZ31B Mg alloy sheets with unusual stress-strain response, Finite. Elem. Anal. Des., 76(2013), p. 39.

    Article  Google Scholar 

  85. C.A. Lee, M.G. Lee, O.S. Seo, N.T. Nguyen, J.H. Kim, and H.Y. Kim, Cyclic behavior of AZ31B Mg: Experiments and non-isothermal forming simulations, Int. J. Plast., 75(2015), p. 39.

    Article  CAS  Google Scholar 

  86. A.A. Roostaei and H. Jahed, A cyclic small-strain plasticity model for wrought Mg alloys under multiaxial loading: Numerical implementation and validation, Int. J. Mech. Sci., 145(2018), p. 318.

    Article  Google Scholar 

  87. M. Li, X.Y. Lou, J.H. Kim, and R.H. Wagoner, An efficient constitutive model for room-temperature, low-rate plasticity of annealed Mg AZ31B sheet, Int. J. Plast., 26(2010), No. 6, p. 820.

    Article  CAS  Google Scholar 

  88. O. Cazacu and F. Barlat, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast., 20(2004), No. 11, p. 2027.

    Article  CAS  Google Scholar 

  89. O. Cazacu, B. Plunkett, and F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast., 22(2006), No. 7, p. 1171.

    Article  CAS  Google Scholar 

  90. B. Plunkett, R.A. Lebensohn, O. Cazacu, and F. Barlat, Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening, Acta Mater., 54(2006), No. 16, p. 4159.

    Article  CAS  Google Scholar 

  91. B. Plunkett, O. Cazacu, and F. Barlat, Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, Int. J. Plast., 24(2008), No. 5, p. 847.

    Article  CAS  Google Scholar 

  92. J.W. Yoon, Y.S. Lou, J. Yoon, and M.V. Glazoff, Asymmetric yield function based on the stress invariants for pressure sensitive metals, Int. J. Plast., 56(2014), p. 184.

    Article  CAS  Google Scholar 

  93. D.G. Tari, M.J. Worswick, U. Ali, and M.A. Gharghouri, Mechanical response of AZ31B magnesium alloy: Experimental characterization and material modeling considering proportional loading at room temperature, Int. J. Plast., 55(2014), p. 247.

    Article  CAS  Google Scholar 

  94. W. Muhammad, M. Mohammadi, J.D. Kang, R.K. Mishra, and K. Inal, An elasto-plastic constitutive model for evolving asymmetric/anisotropic hardening behavior of AZ31B and ZEK100 magnesium alloy sheets considering monotonic and reverse loading paths, Int. J. Plast., 70(2015), p. 30.

    Article  CAS  Google Scholar 

  95. M.G. Lee, R.H. Wagoner, J.K. Lee, K. Chung, and H.Y. Kim, Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets, Int. J. Plast., 24(2008), No. 4, p. 545.

    Article  CAS  Google Scholar 

  96. M.G. Lee, S.J. Kim, R.H. Wagoner, K. Chung, and H.Y. Kim, Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: Application to sheet springback, Int. J. Plast., 25(2009), No. 1, p. 70.

    Article  CAS  Google Scholar 

  97. F. Barlat, J.J. Gracio, M.G. Lee, E.F. Rauch, and G. Vincze, An alternative to kinematic hardening in classical plasticity, Int. J. Plast., 27(2011), No. 9, p. 1309.

    Article  CAS  Google Scholar 

  98. J. Lee, S.J. Kim, Y.S. Lee, J.Y. Lee, D. Kim, and M.G. Lee, Distortional hardening concept for modeling anisotropic/asymmetric plastic behavior of AZ31B magnesium alloy sheets, Int. J. Plast., 94(2017), p. 74.

    Article  CAS  Google Scholar 

  99. W.J. He, T. Lin, and Q. Liu, Experiments and constitutive modeling of deformation behavior of a magnesium sheet during two-step loading, Int. J. Solids Struct., 147(2018), p. 52.

    Article  CAS  Google Scholar 

  100. G.I. Taylor, Plastic Strain in Metals, J. Jpn. Inst. Met., 62(1938), p. 307.

    Google Scholar 

  101. E. Kröner, Zur plastischen verformung des vielkristalls, Acta Metall., 9(1961), No. 2, p. 155.

    Article  Google Scholar 

  102. B. Budiansky and T.T. Wu, Theoretical prediction of plastic strains of polycrystals, [in] Proceedings of the 4th US National Congress of Applied Mechanics, California, 1962, p. 1175.

  103. P. Van Houtte, Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta Metall., 26(1978), No. 4, p. 591.

    Article  Google Scholar 

  104. C.N. Tomé, R.A. Lebensohn, and U.F. Kocks, A model for texture development dominated by deformation twinning: Application to zirconium alloys, Acta Metall. Mater., 39(1991), No. 11, p. 2667.

    Article  Google Scholar 

  105. R.A. Lebensohn and C.N. Tome, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. Mater., 41(1993), No. 9, p. 2611.

    Article  CAS  Google Scholar 

  106. S.R. Agnew, M.H. Yoo, and C.N. Tomé, Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y, Acta Mater., 49(2001), No. 20, p. 4277.

    Article  CAS  Google Scholar 

  107. S.H. Choi, E.J. Shin, and B.S. Seong, Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression, Acta Mater., 55(2007), No. 12, p. 4181.

    Article  CAS  Google Scholar 

  108. S.R. Kalidindi, Incorporation of deformation twinning in crystal plasticity models, J. Mech. Phys. Solids, 46(1998), No. 2, p. 267.

    Article  CAS  Google Scholar 

  109. A. Staroselsky and L. Anand, A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B, Int. J. Plast., 19(2003), No. 10, p. 1843.

    Article  CAS  Google Scholar 

  110. H. Abdolvand and M.R. Daymond, Internal strain and texture development during twinning: Comparing neutron diffraction measurements with crystal plasticity finite-element approaches, Acta Mater., 60(2012), No. 5, p. 2240.

    Article  CAS  Google Scholar 

  111. H. Abdolvand and M.R. Daymond, Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach—Part I: Average behavior, J. Mech. Phys. Solids, 61(2013), No. 3, p. 783.

    Article  CAS  Google Scholar 

  112. H. Abdolvand and M.R. Daymond, Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach; part II: Local behavior, J. Mech. Phys. Solids, 61(2013), No. 3, p. 803.

    Article  CAS  Google Scholar 

  113. T. Hama, T. Suzuki, S. Hatakeyama, H. Fujimoto, and H. Takuda, Role of twinning on the stress and strain behaviors during reverse loading in rolled magnesium alloy sheets, Mater. Sci. Eng. A, 725(2018), p. 8.

    Article  CAS  Google Scholar 

  114. Q. Liu, A. Roy, and V.V. Silberschmidt, Temperature-dependent crystal-plasticity model for magnesium: A bottom-up approach, Mech. Mater., 113(2017), p. 44.

    Article  Google Scholar 

  115. H.J. Zhang, A. Jérusalem, E. Salvati, C. Papadaki, K.S. Fong, X. Song, and A.M. Korsunsky, Multi-scale mechanisms of twinning-detwinning in magnesium alloy AZ31B simulated by crystal plasticity modeling and validated via in situ synchrotron XRD and in situ SEM-EBSD, Int. J. Plast., 119(2019), p. 43.

    Article  CAS  Google Scholar 

  116. J. Zhang and S.P. Joshi, Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium, J. Mech. Phys. Solids, 60(2012), No. 5, p. 945.

    Article  CAS  Google Scholar 

  117. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. London, Ser. A, Math. Phys. Sci., 241(1957), No. 1226, p. 376.

    Google Scholar 

  118. R. Hill, Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13(1965), No. 2, p. 89.

    Article  CAS  Google Scholar 

  119. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. Lond. A, 348(1976), No. 1652, p. 101.

    Article  CAS  Google Scholar 

  120. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé, A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms, Int. J. Plast., 49(2013), p. 36.

    Article  CAS  Google Scholar 

  121. H. Wang, P.D. Wu, and J. Wang, Modeling inelastic behavior of magnesium alloys during cyclic loading-unloading, Int. J. Plast., 47(2013), p. 49.

    Article  CAS  Google Scholar 

  122. H. Qiao, S.R. Agnew, and P.D. Wu, Modeling twinning and detwinning behavior of Mg alloy ZK60A during monotonic and cyclic loading, Int. J. Plast., 65(2015), p. 61.

    Article  CAS  Google Scholar 

  123. H. Qiao, X.Q. Guo, A.L. Oppedal, H. El Kadiri, P.D. Wu, and S.R. Agnew, Twin-induced hardening in extruded Mg alloy AM30, Mater. Sci. Eng. A, 687(2017), p. 17.

    Article  CAS  Google Scholar 

  124. G. Cailletaud and P. Pilvin, Utilisation de modèles polycristallins pour le calcul par éléments finis, Rev. Européenne des Éléments Finis, 3(1994), No. 4, p. 515.

    Article  Google Scholar 

  125. C. Yu, G.Z. Kang, and Q.H. Kan, Crystal plasticity based constitutive model for uniaxial ratchetting of polycrystalline magnesium alloy, Comput. Mater. Sci., 84(2014), p. 63.

    Article  CAS  Google Scholar 

  126. C.O. Frederick and P.J. Armstrong, A mathematical representation of the multiaxial Bauschinger effect, Mater. High Temp., 24(2007), No. 1, p. 1.

    Article  Google Scholar 

  127. H. Li, G.Z. Kang, and C. Yu, Modeling uniaxial ratchetting of magnesium alloys by a new crystal plasticity considering dislocation slipping, twinning and detwinning mechanisms, Int. J. Mech. Sci., 179(2020), art. No. 105660.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 11532010) and Doctoral Innovation Fund Program of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-zheng Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Gz., Li, H. Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models. Int J Miner Metall Mater 28, 567–589 (2021). https://doi.org/10.1007/s12613-020-2216-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2216-8

Keywords

Navigation