Skip to main content
Log in

Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The carbothermic reduction of vanadium titanomagnetite concentrate (VTC) with the assistance of Na2CO3 was conducted in an argon atmosphere between 1073 and 1473 K. X-ray diffraction and scanning electron microscopy were used to investigate the phase transformations during the reaction. By investigating the reaction between VTC and Na2CO3, it was concluded that molten Na2CO3 broke the structure of titanomagnetite by combining with the acidic oxides (Fe2O3, TiO2, Al2O3, and SiO2) to form a Na-rich melt and release FeO and MgO. Therefore, Na2CO3 accelerated the reduction rate. In addition, adding Na2CO3 also benefited the agglomeration of iron particles and the slag—metal separation by decreasing the viscosity of the slag. Thus, Na2CO3 assisted carbothermic reduction is a promising method for treating VTC at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Zheng, F. Chen, Y. Guo, T. Jiang, A. Y. Travyanov, and G. Qiu, Kinetics of hydrochloric acid leaching of titanium from titanium-bearing electric furnace slag, JOM, 68(2016), No. 5, p. 1476.

    Article  CAS  Google Scholar 

  2. X.W. Lv, Z.Q. Lun, J.Q. Yin, and C.Q. Bai, Carbothermic reduction of vanadium titanomagnetite by microwave irradiation and smelting behavior, ISIJ Int., 53(2013), No. 7, p. 1115.

    Article  CAS  Google Scholar 

  3. S. Wang, Y.F. Guo, T. Jiang, L. Yang, F. Chen, F.Q. Zheng, X.L. Xie, and M.J. Tang, Reduction behaviors of iron, vanadium and titanium oxides in smelting of vanadium titanomagnetite metallized pellets, JOM, 69(2017), No. 9, p. 1646.

    Article  CAS  Google Scholar 

  4. S. Samanta, S. Mukherjee, and R. Dey, Upgrading metals via direct reduction from poly-metallic titaniferous magnetite ore, JOM, 67(2015), No. 2, p. 467.

    Article  CAS  Google Scholar 

  5. M.Y. Wang, S.F. Zhou, X.W. Wang, B.F. Chen, H.X. Yang, S.K. Wang, and P.F. Luo, Recovery of iron from chromium vanadium-bearing titanomagnetite concentrate by direct reduction, JOM, 68(2016), No. 10, p. 2698.

    Article  CAS  Google Scholar 

  6. Y.Q. Zhao, T.C. Sun, H.Y. Zhao, C. Chen, and X.P. Wang, Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 152.

    Article  CAS  Google Scholar 

  7. X.H. Li, J. Kou, T.C. Sun, S.C. Wu, and Y.Q. Zhao, Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 301.

    Article  CAS  Google Scholar 

  8. Y.L. Zhen, G.H. Zhang, and K.C. Chou, Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles, Metall. Mater. Trans. B, 46(2015), p. 155.

    Article  CAS  Google Scholar 

  9. W.Q. Fu, Y.C. Wen, and H.E. Xie, Development of intensified technologies of vanadium-bearing titanomagnetite smelting, J. Iron. Steel. Res. Int., 18(2011), No. 4, p. 7.

    Article  CAS  Google Scholar 

  10. L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Precipitation selectivity of perovskite phase from Ti-bearing blast furnace slag under dynamic oxidation conditions, J. Non-Cryst. Solids, 353(2007), No. 22–23, p. 2214.

    Article  CAS  Google Scholar 

  11. L.Y. Shi, Y.L. Zhen, D.S. Chen, Q. Tao, and L.N. Wang, Carbothermic reduction of vanadium-titanium magnetite in molten NaOH, ISIJ Int., 58(2018), No. 4, p. 627.

    Article  CAS  Google Scholar 

  12. Y.M. Zhang, L.Y. Yi, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Oi, A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: Sodium modification—direct reduction coupled process, Int. J. Miner. Metal. Mater., 24(2017), No. 5, p. 504.

    Article  Google Scholar 

  13. Y.M. Zhang, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Oi, A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite, Int. J. Miner. Metal. Mater., 25(2018), No. 2, p. 131.

    Article  CAS  Google Scholar 

  14. F.C. Meng, Y.H. Liu, T.Y. Xue, Q. Su, W.J. Wang, and T. Qi, Structures, formation mechanisms, and ion exchange properties of alpha-, beta-, and gamma-Na2TiO3, RSC Adv., 6(2016), No. 113, p. 112625.

    Article  CAS  Google Scholar 

  15. D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang, and L.N. Wang, A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes, J. Hazard. Mater., 244–245(2013), p. 588.

    Article  Google Scholar 

  16. D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W.J. Wang, Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal, Miner. Eng., 24(2011), No. 8, p. 864.

    Article  CAS  Google Scholar 

  17. L.H. Zhou and F.H. Zeng, Statistical analysis of the effect of Na2CO3 as additive on the reduction of vanadic-titanomag-netite-coal mixed pellets, Adv. Mater. Res., 97–101(2010), p. 465.

    Article  Google Scholar 

  18. Z.H. Zhu, G.Q. Lu, and R.T. Yang, New insights into alkali-catalyzed gasification reactions of carbon: Comparison of Na2O reduction with carbon over Na and K catalysts, J. Catal., 192(2000), No. 1, p. 77.

    Article  CAS  Google Scholar 

  19. E. Foley and K.P. Mackinnon, Alkaline roasting of ilmenite, J. Solid State Chem., 1(1970), No. 3–4, p. 566.

    Article  Google Scholar 

  20. V. Tathavadkar, and A. Jha, The effect of molten sodium titanate and carbonate salt mixture on the alkali roasting of ilmenite and rutile minerals, [in] VII International Conference on Molten Slags Fluxes and Salts, Cape Town, p. 255.

  21. A. Lahiri, and A. Jha, Kinetics and reaction mechanism of soda ash roasting of ilmenite ore for the extraction of titanium dioxide, Metall. Mater. Trans. B, 38(2007), No. 6, p. 939.

    Article  Google Scholar 

  22. S. Parirenyatwa, L. Escudero-Castejon, Y. Hara, A. Jha, and S. Sanchez-Segado, Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals, Hydrometallurgy, 165(2016), p. 213.

    Article  CAS  Google Scholar 

  23. C. Li, A.F. Reid, and S. Saunders, Nonstoichiometric alkali ferrites and aluminates in the systems NaFeO2-TiO2, KFeO2-TiO2, KAlO2-TiO2, and KAlO2-SiO2, J. Solid State Chem., 3(1971), No. 4, p. 614.

    Article  CAS  Google Scholar 

  24. J.W. Kim and H.G. Lee, Thermal and carbothermic decomposition of Na2CO3 and Li2CO3, Metall. Mater. Trans. B, 32(2001), No. 1, p. 17.

    Article  Google Scholar 

  25. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189.

    Article  CAS  Google Scholar 

  26. P.C. Holloway, T.H. Etsell, and A. L. Murland, Roasting of La Oroya zinc ferrite with Na2CO3, Metall. Mater. Trans. B, 38(2007), No. 5, p. 781.

    Article  Google Scholar 

  27. P.C. Holloway, T.H. Etsell, and A.L. Murland, Use of secondary additives to control the dissolution of iron during Na2CO3 roasting of la ooya zinc ferrite, Metall. Mater. Trans. B, 38(2007), No. 5, p. 793.

    Article  Google Scholar 

  28. E.N. Selivanov, K.V. Pikulin, L.I. Galkova, R.I. Gulyaeva, and S.A. Petrova, Kinetics and mechanism of natural wolframite interactions with sodium carbonate, Int. J. Miner. Metal. Mater., 26(2019), No. 11, p. 1364.

    Article  CAS  Google Scholar 

  29. R.Z. Xu, J.L. Zhang, W.X. Han, Z.Y. Chang, and K.X. Jiao, Effect of BaO and Na2O on the viscosity and structure of blast furnace slag, Ironmaking Steelmaking, 47(2020), No. 2, p. 168.

    Article  CAS  Google Scholar 

  30. A. Tomita, Catalysis of carbon—gas reactions, Catal. Surv. Jpn., 5(2001), No. 1, p. 17.

    Article  CAS  Google Scholar 

  31. W. Pan, Z.J. Ma, Z.X. Zhao, W. H. Kim, and D.J. Min, Effect of Na2O on the reduction of Fe2O3 compacts with CO/CO2, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1326.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFC1900500), the National Natural Science Foundation of China (Nos. 21908231, 51774260, 51804289, and 51904286), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (No. QYZDJ-SSW-JSC021), the CAS Interdisciplinary Innovation Team, and the Special Project for Transformation of Major Technological Achievements in Hebei Province, China (No. 19044012Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulan Zhen.

Additional information

Conflict of Interests

The authors declared that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhen, Y., Zhang, G. et al. Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate. Int J Miner Metall Mater 29, 239–247 (2022). https://doi.org/10.1007/s12613-020-2160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2160-7

Keywords

Navigation