Skip to main content

Advertisement

Log in

Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Steel matrix composites (SMCs) reinforced with WC particles were fabricated via selective laser melting (SLM) by employing various laser scan strategies. A detailed relationship between the SLM strategies, defect formation, microstructural evolution, and mechanical properties of SMCs was established. The laser scan strategies can be manipulated to deliberately alter the thermal history of SMC during SLM processing. Particularly, the involved thermal cycling, which encompassed multiple layers, strongly affected the processing quality of SMCs. S-shaped scan sequence combined with interlayer offset and orthogonal stagger mode can effectively eliminate the metallurgical defects and retained austenite within the produced SMCs. However, due to large thermal stress, microcracks that were perpendicular to the building direction formed within the SMCs. By employing the checkerboard filling (CBF) hatching mode, the thermal stress arising during SLM can be significantly reduced, thus preventing the evolution of interlayer microcracks. The compressive properties of fabricated SMCs can be tailored at a high compressive strength (∼3031.5 MPa) and fracture strain (∼24.8%) by adopting the CBF hatching mode combined with the optimized scan sequence and stagger mode. This study demonstrates great feasibility in tuning the mechanical properties of SLM-fabricated SMCs without varying the set energy input, e.g., laser power and scanning speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. AlMangour, D. Grzesiak, and J.M. Yang, Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites, J. Alloys Compd., 728(2017), p. 424.

    Article  CAS  Google Scholar 

  2. H.Y. Chen, D.D. Gu, H.M. Zhang, L.X. Xi, T.W. Lu, L. Deng, U. Kühn, and K. Kosiba, Novel WC-reinforced iron-based composites with excellent mechanical properties synthesized by laser additive manufacturing: Underlying role of reinforcement weight fraction, J. Mater. Process. Technol., 289(2021), art. No. 116959.

  3. D.D. Gu, H.M. Zhang, D.H. Dai, M.J. Xia, C. Hong, and R. Poprawe, Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance, Composites Part B, 163(2019), p. 585.

    Article  CAS  Google Scholar 

  4. X.Q. Ni, D.C. Kong, Y. Wen, L. Zhang, W.H. Wu, B.B. He, L. Lu, and D.X. Zhu, Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 319.

    Article  CAS  Google Scholar 

  5. X.Q. Yang, Y. Liu, J.W. Ye, R.Q. Wang, T.C. Zhou, and B.Y. Mao, Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1396.

    Article  CAS  Google Scholar 

  6. L. Fan, H.Y. Chen, Y.H. Dong, L.H. Dong, and Y.S. Yin, Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 716.

    Article  CAS  Google Scholar 

  7. F.Y. Niu, D.J. Wu, G.Y. Ma, and B. Zhang, Additive manufacturing of ceramic structures by laser engineered net shaping, Chin. J. Mech. Eng., 28(2015), No. 6, p. 1117.

    Article  CAS  Google Scholar 

  8. B. AlMangour, D. Grzesiak, T. Borkar, and J.M. Yang, Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting, Mater. Des., 138(2018), p. 119.

    Article  CAS  Google Scholar 

  9. B. AlMangour, D. Grzesiak, and J.M. Yang, Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content, Mater. Des., 104(2016), p. 141.

    Article  CAS  Google Scholar 

  10. N. Kang, W.Y. Ma, L. Heraud, M.E. Mansori, F.H. Li, M. Liu, and H.L. Liao, Selective laser melting of tungsten carbide reinforced maraging steel composite, Addit. Manuf., 22(2018), p. 104.

    CAS  Google Scholar 

  11. X.C. Yan, C.Y. Chen, R.X. Zhao, W.Y. Ma, R. Bolot, J. Wang, Z.M. Ren, H.L. Liao, and M. Liu, Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance, Surf. Coat. Technol., 371(2019), p. 355.

    Article  CAS  Google Scholar 

  12. J.D. Wang, L.Q. Li, and W. Tao, Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition, Opt. Laser Technol., 82(2016), p. 170.

    Article  CAS  Google Scholar 

  13. J.P. Kruth, L. Froyen, J.V. Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective laser melting of iron-based powder, J. Mater. Process. Technol., 149(2004), No. 1–3, p. 616.

    Article  CAS  Google Scholar 

  14. W.X. Zhang, Y.S. Shi, B. Liu, L. Xu, and W. Jiang, Consecutive sub-sector scan mode with adjustable scan lengths for selective laser melting technology, Int. J. Adv. Manuf. Technol., 41(2009), No. 7–8, art. No. 706.

  15. B. Qian, Y.S. Shi, Q.S. Wei, and H.B. Wang, The helix scan strategy applied to the selective laser melting, Int. J. Adv. Manuf. Technol., 63(2012), No. 5–8, p. 631.

    Google Scholar 

  16. X.B. Su and Y.Q. Yang, Research on track overlapping during selective laser melting of powders, J. Mater. Process. Technol., 212(2012), No. 10, p. 2074.

    Article  Google Scholar 

  17. K.G. Prashanth, S. Scudino, and J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting, Acta Mater., 126(2017), p. 25.

    Article  CAS  Google Scholar 

  18. P. Mercelis and J.P. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyping J., 12(2006), No. 5, p. 254.

    Article  Google Scholar 

  19. S.A. Sillars, C.J. Sutcliffe, A.M. Philo, S.G.R. Brown, J. Sienz, and N.P. Lavery, The three-prong method: A novel assessment of residual stress in laser powder bed fusion, Virtual Phys. Prototyping, 13(2018), No. 1, p. 20.

    Article  Google Scholar 

  20. D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, and J. Schrage, Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting, J. Laser Appl., 26(2014), No. 1, art. No. 012004.

  21. Y. Liu, Y.Q. Yang, and D. Wang, A study on the residual stress during selective laser melting (SLM) of metallic powder, Int. J. Adv. Manuf. Technol., 87(2016), No. 1–4, p. 647.

    Article  Google Scholar 

  22. D.H. Dai and D.D. Gu, Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments, Mater. Des., 55(2014), p. 482.

    Article  CAS  Google Scholar 

  23. X.C. Wang, T. Laoui, J. Bonse, J.P. Kruth, B. Lauwers, and L. Froyen, Direct selective laser sintering of hard metal powders: Experimental study and simulation, Int. J. Adv. Manuf. Technol., 19(2002), No. 5, p. 351.

    Article  Google Scholar 

  24. M. Badrossamay and T.H.C. Childs, Further studies in selective laser melting of stainless and tool steel powders, Int. J. Mach. Tools Manuf., 47(2007), No. 5, p. 779.

    Article  Google Scholar 

  25. Y.H. Xiong, W.H. Hofmeister, Z. Cheng, J.E. Smugeresky, E.J. Lavernia, and J.M. Schoenung, In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide-cobalt during laser deposition, Acta Mater., 57(2009), No. 18, p. 5419.

    Article  CAS  Google Scholar 

  26. B.J. Keene, Review of data for the surface tension of pure metals, Int. Mater. Rev., 38(1993), No. 4, p. 157.

    Article  CAS  Google Scholar 

  27. A. Hussein, L. Hao, C.Z. Yan, and R. Everson, Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting, Mater. Des., 52(2013), p. 638.

    Article  CAS  Google Scholar 

  28. D.D. Gu and Y.F. Shen, Balling phenomena during direct laser sintering of multi-component Cu-based metal powder, J. Alloys Compd., 432(2007), No. 1–2, p. 163.

    Article  CAS  Google Scholar 

  29. B. Cheng, S. Shrestha, and K. Chou, Stress and deformation evaluations of scanning strategy effect in selective laser melting, Addit. Manuf., 12(2016), p. 240.

    Google Scholar 

  30. D. Wang, C.H. Song, Y.Q. Yang, and Y.C. Bai, Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts, Mater. Des., 100(2016), p. 291.

    Article  CAS  Google Scholar 

  31. M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe, Residual stress within metallic model made by selective laser melting process, CIRP Ann., 53(2004), No. 1, p. 195.

    Article  Google Scholar 

  32. N.K. Tolochko, M.K. Arshinov, A.V. Gusarov, V.I. Titov, T. Laoui, and L. Froyen, Mechanisms of selective laser sintering and heat transfer in Ti powder, Rapid Prototyping J., 9(2003), No. 5, p. 314.

    Article  Google Scholar 

  33. M.L. Zhong, H.Q. Sun, W.J. Liu, X.F. Zhu, and J.J. He, Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy, Scripta Mater., 53(2005), No. 2, p. 159.

    Article  CAS  Google Scholar 

  34. H.Y. Chen, D.D. Gu, D.H. Dai, M.J. Xia, and C.L. Ma, A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting, Mater. Lett., 227(2018), p. 128.

    Article  CAS  Google Scholar 

  35. H.Y. Chen, D.D. Gu, L. Deng, T.W. Lu, U. Kühn, and K. Kosiba, Laser additive manufactured high-performance Fe-based composites with unique strengthening structure, J. Mater. Sci. Technol., (2020). DOI: https://doi.org/10.1016/j.jmst.2020.04.011

  36. Y.M. Wang, T. Voisin, J.T. McKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater., 17(2018), No. 1, p. 63.

    Article  CAS  Google Scholar 

  37. J.W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metall., 10(1962), No. 9, p. 789.

    Article  CAS  Google Scholar 

  38. A. Inoue, B.L. Shen, and C.T. Chang, Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system, Acta Mater., 52(2004), No. 14, p. 4093.

    Article  CAS  Google Scholar 

  39. T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, and D. Schwarze, Highly anisotropic steel processed by selective laser melting, Metall. Mater. Trans. B, 44(2013), No. 4, p. 794.

    Article  CAS  Google Scholar 

  40. J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting, Acta Mater., 115(2016), p. 285.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program “Additive Manufacturing and Laser Manufacturing” (No. 2016YFB1100101), the National Natural Science Foundation of China (No. 51735005), the Basic Strengthening Program of Science and Technology (No. 2019-JCJQ-JJ-331), the 5th Jiangsu Province 333 High Level Talents Training Project, China (No. BRA2019048), the 15th Batch of “Six Talents Peaks” Innovative Talents Team Program “Laser Precise Additive Manufacturing of Structure-Performance Integrated Lightweight Alloy Components” (No. TD-GDZB-001), and the 2017 Excellent Scientific and Technological Innovation Teams of Universities in Jiangsu “Laser Additive Manufacturing Technologies for Metallic Components” funded by Jiangsu Provincial Department of Education of China (No. 51921003). Konrad Kosiba acknowledges the support from DFG under Grant No. KO 5771/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-dong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Hy., Gu, Dd., Ge, Q. et al. Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing. Int J Miner Metall Mater 28, 462–474 (2021). https://doi.org/10.1007/s12613-020-2133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2133-x

Keywords

Navigation