Skip to main content

Advertisement

Log in

Treatment from within: Ductal Carcinoma as an Opportunity to Harness the Immune System

  • Non-Invasive Breast Cancer Diagnosis and Treatment (ES Hwang, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Breast Ductal Carcinoma in Situ (DCIS) is an increasingly common diagnosis and already accounts for ~20% of screen-detected breast cancers. A subset of patients with DCIS will experience disease recurrence and some will die from breast cancer. Tailored strategies for treatment are lacking at this time. Human Epidermal Growth Factor Receptor 2 (HER2) is a tumor associated antigen that is shown to correlate with poorer outcomes among patients with early breast cancer, including DCIS. Significant interactions between the humoral and cellular branches of the immune system were observed in tumorigenesis of HER2-expressing lesions. These can be leveraged through administration vaccines to improve outcomes among patients with HER2+ DCIS.

Recent Findings

Pre-clinical and clinical data support that immune response supported not only by CD8+ cytotoxic T cells but also CD4+ helper T cells can lead to antitumor activity in DCIS. These early studies have demonstrated prolonged, broad, activation of the immune system, and with a favorable toxicity profile.

Summary

As nuances in our understanding of immune responses to early breast cancer begin to unveil, there is growing momentum in the development of preventative strategies. Clinical trials assessing the efficacy of vaccines for the treatment of DCIS are forthcoming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fang Y, Wu J, Wang W, Fei X, Zong Y, Chen X, et al. Biologic behavior and long-term outcomes of breast ductal carcinoma in situ with microinvasion. Oncotarget. 2016;7(39):64182–90. https://doi.org/10.18632/oncotarget.11639.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ernster VL, Ballard-Barbash R, Barlow WE, Zheng Y, Weaver DL, Cutter G, et al. Detection of ductal carcinoma in situ in women undergoing screening mammography. J Natl Cancer Inst. 2002;94(20):1546–54. https://doi.org/10.1093/jnci/94.20.1546.

    Article  PubMed  Google Scholar 

  3. Narod SA, Iqbal J, Giannakeas V, Sopik V, Sun P. Breast Cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA Oncol. 2015;1(7):888–96. https://doi.org/10.1001/jamaoncol.2015.2510.

    Article  PubMed  Google Scholar 

  4. van Seijen M, Lips EH, Thompson AM, Nik-Zainal S, Futreal A, Hwang ES, et al. Ductal carcinoma in situ: to treat or not to treat, that is the question. Br J Cancer. 2019;121(4):285–92. https://doi.org/10.1038/s41416-019-0478-6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hwang ES, Hyslop T, Lynch T, Frank E, Pinto D, Basila D, et al. The COMET (comparison of operative versus monitoring and endocrine therapy) trial: a phase III randomised controlled clinical trial for low-risk ductal carcinoma in situ (DCIS). BMJ Open. 2019;9(3):e026797. https://doi.org/10.1136/bmjopen-2018-026797.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Casasent AK, Edgerton M, Navin NE. Genome evolution in ductal carcinoma in situ: invasion of the clones. J Pathol. 2017;241(2):208–18. https://doi.org/10.1002/path.4840.

    Article  PubMed  Google Scholar 

  7. Shee K, Muller KE, Marotti J, Miller TW, Wells WA, Tsongalis GJ. Ductal carcinoma in situ biomarkers in a precision medicine era: current and future molecular-based testing. Am J Pathol. 2019;189(5):956–65. https://doi.org/10.1016/j.ajpath.2018.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bremer T, Whitworth PW, Patel R, Savala J, Barry T, Lyle S, et al. A biological signature for breast ductal carcinoma in situ to predict radiotherapy benefit and assess recurrence risk. Clin Cancer Res. 2018;24(23):5895–901. https://doi.org/10.1158/1078-0432.CCR-18-0842.

    Article  PubMed  Google Scholar 

  9. Solin LJ, Gray R, Baehner FL, Butler SM, Hughes LL, Yoshizawa C, et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst. 2013;105(10):701–10. https://doi.org/10.1093/jnci/djt067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan Y, Van Dyke AL, Kurian AW, Negoita S, Petkov VI. Oncotype DX DCIS use and clinical utility: A SEER population-based study. J Clin Oncol. 2019;37(15). https://doi.org/10.1200/JCO.2019.37.15_suppl.e12046.

  11. Lari SA, Kuerer HM. Biological markers in DCIS and risk of breast recurrence: a systematic review. J Cancer. 2011;2:232–61.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Costa R, Zaman S, Sharpe S, Helenowski I, Shaw C, Han H, et al. A brief report of toxicity end points of HER2 vaccines for the treatment of patients with HER2(+) breast cancer. Drug Des Dev Ther. 2019;13:309–16. https://doi.org/10.2147/DDDT.S188925. This systematic review and meta-analysis of published clinical trials supports the favorable toxicity profile of HER2 vaccines under development for the treatment of HER2-positive breast cancer.

    Article  CAS  Google Scholar 

  13. Hosseini H, Obradovic MMS, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016;540(7634):552–8. https://doi.org/10.1038/nature20785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Magbanua MJM, Rugo HS, Hauranieh L, Roy R, Scott JH, Lee JC, et al. Genomic and expression profiling reveal molecular heterogeneity of disseminated tumor cells in bone marrow of early breast cancer. NPJ Breast Cancer. 2018;4:31. https://doi.org/10.1038/s41523-018-0083-5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tabuchi Y, Shimoda M, Kagara N, Naoi Y, Tanei T, Shimomura A, et al. Protective effect of naturally occurring anti-HER2 autoantibodies on breast cancer. Breast Cancer Res Treat. 2016;157:55–63. https://doi.org/10.1007/s10549-016-3801-4.

    Article  CAS  PubMed  Google Scholar 

  16. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol. 2014;25(8):1536–43. https://doi.org/10.1093/annonc/mdu191.

    Article  CAS  PubMed  Google Scholar 

  17. Stanton SE, Adams S, Disis ML. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast Cancer subtypes: a systematic review. JAMA Oncol. 2016;2(10):1354–60. https://doi.org/10.1001/jamaoncol.2016.1061.

    Article  PubMed  Google Scholar 

  18. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55. https://doi.org/10.1200/JCO.2010.30.5037.

    Article  PubMed  Google Scholar 

  19. Bos R, Sherman LA. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 2010;70(21):8368–77. https://doi.org/10.1158/0008-5472.CAN-10-1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574:696–701. https://doi.org/10.1038/s41586-019-1671-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boggio K, Nicoletti G, Di Carlo E, Cavallo F, Landuzzi L, Melani C, et al. Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of her-2/neu transgenic mice. J Exp Med. 1998;188(3):589–96. https://doi.org/10.1084/jem.188.3.589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Curcio C, Di Carlo E, Clynes R, Smyth MJ, Boggio K, Quaglino E, et al. Nonredundant roles of antibody, cytokines, and perforin in the eradication of established her-2/neu carcinomas. J Clin Invest. 2003;111(8):1161–70. https://doi.org/10.1172/JCI17426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Braumuller H, Wieder T, Brenner E, Assmann S, Hahn M, Alkhaled M, et al. T-helper-1-cell cytokines drive cancer into senescence. Nature. 2013;494(7437):361–5. https://doi.org/10.1038/nature11824.

    Article  CAS  PubMed  Google Scholar 

  24. Datta J, Rosemblit C, Berk E, Showalter L, Namjoshi P, Mick R, et al. Progressive Loss of Anti-HER2 CD4+ T-helper Type 1 Response in Breast Tumorigenesis and the Potential for Immune Restoration. OncoImmunology. 2015. https://doi.org/10.1080/2162402X.2015.1022301.

  25. Cavallo F, Quaglino E, Cifaldi L, Di Carlo E, Andre A, Bernabei P, et al. Interleukin 12-activated lymphocytes influence tumor genetic programs. Cancer Res. 2001;61(8):3518–23.

    CAS  PubMed  Google Scholar 

  26. Rakhra K, Bachireddy P, Zabuawala T, Zeiser R, Xu L, Kopelman A, et al. CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell. 2010;18(5):485–98. https://doi.org/10.1016/j.ccr.2010.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tkach MCL, Rosemblit C, Rivas MA, Proietti CJ, Díaz Flaqué MC, Beguelin W, et al. Targeting Stat3 induces senescence in tumor cells and elicits prophylactic and therapeutic immune responses against breast cancer growth mediated by NK cells and CD4+ T cells. J Immunol. 2012;189(3):1162–72.

    Article  CAS  PubMed  Google Scholar 

  28. Cavallo F, Di Carlo E, Butera M, Verrua R, Colombo MP, Musiani P, et al. Immune events associated with the cure of established tumors and spontaneous metastases by local and systemic interleukin 12. Cancer Res. 1999;59(2):414–21.

    CAS  PubMed  Google Scholar 

  29. Prachi Namjoshi LS, Czerniecki BJ, Koski GK. T-helper 1-type cytokines induce apoptosis and loss of HER-family oncodriver expression in murine and human breast cancer cells. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.0298.

  30. Gil EY, Jo UH, Lee HJ, Kang J, Seo JH, Lee ES, et al. Vaccination with ErbB-2 peptides prevents cancer stem cell expansion and suppresses the development of spontaneous tumors in MMTV-PyMT transgenic mice. Breast Cancer Res Treat. 2014;147(1):69–80. https://doi.org/10.1007/s10549-014-3086-4.

    Article  CAS  PubMed  Google Scholar 

  31. Verma C, Eremin JM, Robins A, Bennett AJ, Cowley GP, El-Sheemy MA, et al. Abnormal T regulatory cells (Tregs: FOXP3+, CTLA-4+), myeloid-derived suppressor cells (MDSCs: monocytic, granulocytic) and polarised T helper cell profiles (Th1, Th2, Th17) in women with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC) and surgery: failure of abolition of abnormal treg profile with treatment and correlation of treg levels with pathological response to NAC. J Transl Med. 2013;11:16. https://doi.org/10.1186/1479-5876-11-16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Datta J, Rosemblit C, Berk E, Showalter L, Namjoshi P, Mick R, et al. Progressive loss of anti-HER2 CD4(+) T-helper type 1 response in breast tumorigenesis and the potential for immune restoration. Oncoimmunology. 2015;4(10):e1022301. https://doi.org/10.1080/2162402x.2015.1022301.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tomioka N, Azuma M, Ikarashi M, Yamamoto M, Sato M, Watanabe KI, et al. The therapeutic candidate for immune checkpoint inhibitors elucidated by the status of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression in triple negative breast cancer (TNBC). Breast Cancer. 2018;25(1):34–42. https://doi.org/10.1007/s12282-017-0781-0.

    Article  PubMed  Google Scholar 

  34. Kim A, Lee SJ, Kim YK, Park WY, Park DY, Kim JY, et al. Programmed death-ligand 1 (PD-L1) expression in tumour cell and tumour infiltrating lymphocytes of HER2-positive breast cancer and its prognostic value. Sci Rep. 2017;7(1):11671. https://doi.org/10.1038/s41598-017-11905-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci U S A. 2011;108(17):7142–7. https://doi.org/10.1073/pnas.1016569108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315):315ra188. https://doi.org/10.1126/scitranslmed.aac4925.

    Article  CAS  PubMed  Google Scholar 

  37. Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, et al. Single-cell Transcriptomics of pancreatic Cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res. 2019;25(7):2194–205. https://doi.org/10.1158/1078-0432.CCR-18-1955.

    Article  PubMed  Google Scholar 

  38. Beane JE, Mazzilli SA, Campbell JD, Duclos G, Krysan K, Moy C, et al. Molecular subtyping reveals immune alterations associated with progression of bronchial premalignant lesions. Nat Commun. 2019;10(1):1856–13. https://doi.org/10.1038/s41467-019-09834-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teixeira VH, Pipinikas CP, Pennycuick A, Lee-Six H, Chandrasekharan D, Beane J, et al. Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions. Nat Med. 2019;25(3):517–25. https://doi.org/10.1038/s41591-018-0323-0.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567(7749):479–85. https://doi.org/10.1038/s41586-019-1032-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bailur JK, McCachren SS, Doxie DB, Shrestha M, Pendleton K, Nooka AK, et al. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight. 2019;5. https://doi.org/10.1172/jci.insight.127807.

  42. Ma P, Beatty PL, McKolanis J, Brand R, Schoen RE, Finn OJ. Circulating myeloid derived suppressor cells (MDSC) that accumulate in Premalignancy share phenotypic and functional characteristics with MDSC in Cancer. Front Immunol. 2019;10:1401. https://doi.org/10.3389/fimmu.2019.01401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krysan K, Tran LM, Grimes BS, Fishbein GA, Seki A, Gardner BK, et al. The immune contexture associates with the genomic landscape in lung adenomatous Premalignancy. Cancer Res. 2019;79(19):5022–33. https://doi.org/10.1158/0008-5472.CAN-19-0153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stanton SE, Gad E, Corulli LR, Lu H, Disis ML. Tumor-associated antigens identified early in mouse mammary tumor development can be effective vaccine targets. Vaccine. 2019;37(27):3552–61. https://doi.org/10.1016/j.vaccine.2019.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harada S, Mick R, Roses RE, Graves H, Niu H, Sharma A, et al. The significance of HER-2/neu receptor positivity and immunophenotype in ductal carcinoma in situ with early invasive disease. J Surg Oncol. 2011;104(5):458–65. https://doi.org/10.1002/jso.21973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miligy IM, Toss MS, Gorringe KL, Lee AHS, Ellis IO, Green AR, et al. The clinical and biological significance of HER2 over-expression in breast ductal carcinoma in situ: a large study from a single institution. Br J Cancer. 2019;120(11):1075–82. https://doi.org/10.1038/s41416-019-0436-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Magbanua MJM, Yau C, Wolf DM, Lee JS, Chattopadhyay A, Scott JH, et al. Synchronous detection of circulating tumor cells in blood and disseminated tumor cells in bone marrow predicts adverse outcome in early breast Cancer. Clin Cancer Res. 2019;25(17):5388–97. https://doi.org/10.1158/1078-0432.CCR-18-3888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tolaney SM, Barry WT, Dang CT, Yardley DA, Moy B, Marcom PK, et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N Engl J Med. 2015;372(2):134–41. https://doi.org/10.1056/NEJMoa1406281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gonzalez-Angulo AM, Litton JK, Broglio KR, Meric-Bernstam F, Rakkhit R, Cardoso F, et al. High risk of recurrence for patients with breast cancer who have human epidermal growth factor receptor 2-positive, node-negative tumors 1 cm or smaller. J Clin Oncol. 2009;27(34):5700–6. https://doi.org/10.1200/JCO.2009.23.2025.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rosemblit C, Datta J, Lowenfeld L, Xu S, Basu A, Kodumudi K, et al. Oncodriver inhibition and CD4(+) Th1 cytokines cooperate through Stat1 activation to induce tumor senescence and apoptosis in HER2+ and triple negative breast cancer: implications for combining immune and targeted therapies. Oncotarget. 2018;9(33):23058–77. https://doi.org/10.18632/oncotarget.25208.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Showalter LE, Oechsle C, Ghimirey N, Steele C, Czerniecki BJ, Koski GK. Th1 cytokines sensitize HER-expressing breast cancer cells to lapatinib. PLoS One. 2019;14(1):e0210209. https://doi.org/10.1371/journal.pone.0210209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fracol M, Xu S, Mick R, Fitzpatrick E, Nisenbaum H, Roses R, et al. Response to HER-2 pulsed DC1 vaccines is predicted by both HER-2 and estrogen receptor expression in DCIS. Ann Surg Oncol. 2013;20(10):3233–9. https://doi.org/10.1245/s10434-013-3119-y.

    Article  PubMed  Google Scholar 

  53. Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 2012;118(17):4354–62. https://doi.org/10.1002/cncr.26734.

    Article  CAS  PubMed  Google Scholar 

  54. •• Lowenfeld L, Mick R, Datta J, Xu S, Fitzpatrick E, Fisher CS, et al. Dendritic Cell Vaccination Enhances Immune Responses and Induces Regression of HER2pos DCIS Independent of Route: Results of Randomized Selection Design Trial. Clin Cancer Res. 2017;23(12):2961–71. https://doi.org/10.1158/1078-0432.CCR-16-1924. This reference presents the results of a early phase clinical trial showing preliminary evidence of antitumor activity of HER2-dendritic cells for the treatment of HER2-positive ductal carcinoma in situ of the breast.

    Article  CAS  PubMed  Google Scholar 

  55. Lowenfeld L, Zaheer S, Oechsle C, Fracol M, Datta J, Xu S, et al. Addition of anti-estrogen therapy to anti-HER2 dendritic cell vaccination improves regional nodal immune response and pathologic complete response rate in patients with ER(pos)/HER2(pos) early breast cancer. Oncoimmunology. 2017;6(9):e1207032. https://doi.org/10.1080/2162402X.2016.1207032.

    Article  PubMed  Google Scholar 

  56. Beckwitt CH, Shiraha K, Wells A. Lipophilic statins limit cancer cell growth and survival, via involvement of Akt signaling. PLoS One. 2018;13(5):e0197422. https://doi.org/10.1371/journal.pone.0197422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. •• Kodumudi KN, Ramamoorthi G, Snyder C, Basu A, Jia Y, Awshah S, et al. Sequential Anti-PD1 Therapy Following Dendritic Cell Vaccination Improves Survival in a HER2 Mammary Carcinoma Model and Identifies a Critical Role for CD4 T Cells in Mediating the Response. Front Immunol. 2019;10:1939. https://doi.org/10.3389/fimmu.2019.01939. This reference presents the results of a pre-clinical study showing synergistic activity of sequential treatment with immune checkpoint inhitor followed by HER2 vaccination. The results presented support the clinical development of the combination for treatment of patients with HER2-positive breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Loi S, Giobbie-Hurder A, Gombos A, Bachelot T, Hui R, Curigliano G, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial. Lancet Oncol. 2019;20(3):371–82. https://doi.org/10.1016/S1470-2045(18)30812-X. This reference presents the results of an early-phase clinical trial assessing the preliminary efficacy and toxicity profile pembrolizumab among patients with HER2-positive breast cancer. The efficacy signal was modest with an overall response rate of 18% suggesting the need for treatment combination.

    Article  CAS  PubMed  Google Scholar 

  59. •• Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N Engl J Med. 2019. https://doi.org/10.1056/NEJMoa1914510. The results of this phase 2 trial showed that HER2-targeted therapies can be effective in treating heavily pre-treated patients as trastuzumab Deruxtecan showed a overall response rate of 60% for the treatment of these patients.

  60. Costa R, Carneiro BA, Agulnik M, Rademaker AW, Pai SG, Villaflor VM, et al. Toxicity profile of approved anti-PD-1 monoclonal antibodies in solid tumors: a systematic review and meta-analysis of randomized clinical trials. Oncotarget. 2017;8(5):8910–20. https://doi.org/10.18632/oncotarget.13315.

    Article  PubMed  Google Scholar 

Download references

Funding

Part of the work referenced on this review was supported by U.S. Army Medical Research and Materiel Command (grant number: W81XWH-16-1-0385), Shula Foundation® (www.shulas.com), Pennies in Action® (www.pennies-in-action.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. B. Costa.

Ethics declarations

Conflict of Interest

Brian Czerniecki reports intellectual property on DC1 vaccine with ImmunoRestoration. Justin Wilkes declares no conflict of interest relevant to this manuscript. Ricardo Costa received consulting honoraria from Bristol Myers Squibb, Pfizer, Daiichi Sankyo; and recieved research grant from Bristol Meyers Squibb.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Non-Invasive Breast Cancer Diagnosis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkes, J.G., Czerniecki, B.J. & Costa, R.L.B. Treatment from within: Ductal Carcinoma as an Opportunity to Harness the Immune System. Curr Breast Cancer Rep 12, 82–89 (2020). https://doi.org/10.1007/s12609-020-00356-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-020-00356-1

Keywords

Navigation