Skip to main content

Advertisement

Log in

Multimodality Imaging of Ductal Carcinoma In Situ

  • Non-Invasive Breast Cancer Diagnosis and Treatment (ES Hwang, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We aim to review the appearance of ductal carcinoma in situ (DCIS) across the spectrum of imaging modalities used in common clinical practice.

Recent Findings

Changes in technology and clinical breast cancer screening patterns have impacted the imaging evaluation of DCIS. DCIS classically presents as asymptomatic calcifications in women undergoing screening mammography. The replacement of traditional 2D mammography with digital breast tomosynthesis has changed the typical appearance of screen-detected DCIS. Ultrasound is traditionally utilized to detect DCIS in women with clinical symptoms, but efforts to increase screening ultrasound rates for women with dense breasts makes it more important to identify the appearance of DCIS in asymptomatic women. Improvements in MRI technology have made MRI the most sensitive imaging modality to detect DCIS and define the extent of disease, which is increasingly important given greater utilization of MRI for high-risk screening and determination of extent of known disease. Finally, the emergence of active surveillance, or non-surgical management, for DCIS has increased the focus on presurgical identification of associated invasive cancer, with early results demonstrating promise via computer vision and deep learning approaches for this task.

Summary

DCIS has a highly variable imaging appearance which is subject to changes in imaging technology and clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Joint Committee on Cancer. Breast Cancer Staging 7th edition. In: American Cancer Society.

  2. Cancer facts & figures 2017. In: American Cancer Society,

  3. Hooley RJ. Breast density legislation and clinical evidence. Radiol Clin N Am. 2017;55:513–26. https://doi.org/10.1016/j.rcl.2016.12.006.

    Article  PubMed  Google Scholar 

  4. Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR. J Am Coll Radiol. 2018;15:408–14. https://doi.org/10.1016/j.jacr.2017.11.034.

    Article  PubMed  Google Scholar 

  5. Yamada T, Mori N, Watanabe M, et al. Radiologic-pathologic correlation of ductal carcinoma in situ. Radiographics. 2010;30:1183–98. https://doi.org/10.1148/rg.305095073.

    Article  PubMed  Google Scholar 

  6. Barreau B, de Mascarel I, Feuga C, et al. Mammography of ductal carcinoma in situ of the breast: review of 909 cases with radiographic-pathologic correlations. Eur J Radiol. 2005;54:55–61. https://doi.org/10.1016/j.ejrad.2004.11.019.

    Article  PubMed  Google Scholar 

  7. O'Grady S, Morgan MP. Microcalcifications in breast cancer: from pathophysiology to diagnosis and prognosis. Biochim Biophys Acta Rev Cancer. 1869;2018:310–20. https://doi.org/10.1016/j.bbcan.2018.04.006.

    Article  CAS  Google Scholar 

  8. Cox RF, Morgan MP. Microcalcifications in breast cancer: lessons from physiological mineralization. Bone. 2013;53:437–50. https://doi.org/10.1016/j.bone.2013.01.013.

    Article  CAS  PubMed  Google Scholar 

  9. • D’Orsi CJSE, Mendelson EB, Morris EA. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston: American College of Radiology; 2013. Primary lexicon by which breast radiologists interpret breast imaging studies.

    Google Scholar 

  10. Rauch GM, Hobbs BP, Kuerer HM, et al. Microcalcifications in 1657 patients with pure ductal carcinoma in situ of the breast: correlation with clinical, histopathologic, biologic features, and local recurrence. Ann Surg Oncol. 2016;23:482–9. https://doi.org/10.1245/s10434-015-4876-6.

    Article  PubMed  Google Scholar 

  11. Lee AY, Wisner DJ, Aminololama-Shakeri S, et al. Inter-reader variability in the use of BI-RADS descriptors for suspicious findings on diagnostic mammography: a multi-institution study of 10 academic radiologists. Acad Radiol. 2017;24:60–6. https://doi.org/10.1016/j.acra.2016.09.010.

    Article  PubMed  Google Scholar 

  12. Holmberg L, Wong YN, Tabar L, et al. Mammography casting-type calcification and risk of local recurrence in DCIS: analyses from a randomised study. Br J Cancer. 2013;108:812–9. https://doi.org/10.1038/bjc.2013.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malik HZ, Wilkinson L, George WD, Purushotham AD. Preoperative mammographic features predict clinicopathological risk factors for the development of local recurrence in breast cancer. Breast. 2000;9:329–33. https://doi.org/10.1054/brst.1999.0148.

    Article  CAS  PubMed  Google Scholar 

  14. Stomper PC, Connolly JL. Ductal carcinoma in situ of the breast: correlation between mammographic calcification and tumor subtype. AJR Am J Roentgenol. 1992;159:483–5. https://doi.org/10.2214/ajr.159.3.1323923.

    Article  CAS  PubMed  Google Scholar 

  15. Evans A, Pinder S, Wilson R, et al. Ductal carcinoma in situ of the breast: correlation between mammographic and pathologic findings. AJR Am J Roentgenol. 1994;162:1307–11. https://doi.org/10.2214/ajr.162.6.8191988.

    Article  CAS  PubMed  Google Scholar 

  16. Dinkel HP, Gassel AM, Tschammler A. Is the appearance of microcalcifications on mammography useful in predicting histological grade of malignancy in ductal cancer in situ? Br J Radiol. 2000;73:938–44. https://doi.org/10.1259/bjr.73.873.11064645.

    Article  CAS  PubMed  Google Scholar 

  17. Slanetz PJ, Giardino AA, Oyama T, et al. Mammographic appearance of ductal carcinoma in situ does not reliably predict histologic subtype. Breast J. 2001;7:417–21.

    Article  CAS  Google Scholar 

  18. Leonard GD, Swain SM. Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst. 2004;96:906–20.

    Article  Google Scholar 

  19. Stomper PC, Connolly JL, Meyer JE, Harris JR. Clinically occult ductal carcinoma in situ detected with mammography: analysis of 100 cases with radiologic-pathologic correlation. Radiology. 1989;172:235–41. https://doi.org/10.1148/radiology.172.1.2544922.

    Article  CAS  PubMed  Google Scholar 

  20. Yang WT, Tse GM. Sonographic, mammographic, and histopathologic correlation of symptomatic ductal carcinoma in situ. AJR Am J Roentgenol. 2004;182:101–10. https://doi.org/10.2214/ajr.182.1.1820101.

    Article  PubMed  Google Scholar 

  21. •• Brennan ME, Turner RM, Ciatto S, et al. Ductal carcinoma in situ at core-needle biopsy: meta-analysis of underestimation and predictors of invasive breast cancer. Radiology. 2011;260:119–28. https://doi.org/10.1148/radiol.11102368A large meta-analysis demonstrating upstaging rates for DCIS to invasive disease and presurgical factors associated with upstaging.

    Article  PubMed  Google Scholar 

  22. Hermann G, Janus C, Schwartz IS, Papatestas A, Hermann DG, Rabinowitz JG. Occult malignant breast lesions in 114 patients: relationship to age and the presence of microcalcifications. Radiology. 1988;169:321–4. https://doi.org/10.1148/radiology.169.2.2845470.

    Article  CAS  PubMed  Google Scholar 

  23. Sekine K, Tsunoda-Shimizu H, Kikuchi M, Saida Y, Kawasaki T, Suzuki K. DCIS showing architectural distortion on the screening mammogram—comparison of mammographic and pathological findings. Breast Cancer. 2007;14:281–4.

    Article  Google Scholar 

  24. Su X, Lin Q, Cui C, et al. Non-calcified ductal carcinoma in situ of the breast: comparison of diagnostic accuracy of digital breast tomosynthesis, digital mammography, and ultrasonography. Breast Cancer. 2017;24:562–70. https://doi.org/10.1007/s12282-016-0739-7.

    Article  PubMed  Google Scholar 

  25. Xu Y, Miyake KK, Liu YI, et al. The Milky Way Sign: a new diagnostic finding of ductal carcinoma in situ on digital breast tomosynthesis. Breast J. 2016;22:349–51. https://doi.org/10.1111/tbj.12583.

    Article  PubMed  Google Scholar 

  26. Bernardi D, Macaskill P, Pellegrini M, et al. Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study. Lancet Oncol. 2016;17:1105–13. https://doi.org/10.1016/S1470-2045(16)30101-2.

    Article  PubMed  Google Scholar 

  27. Caumo F, Zorzi M, Brunelli S, et al. Digital breast tomosynthesis with synthesized two-dimensional images versus full-field digital mammography for population screening: outcomes from the Verona screening program. Radiology. 2018;287:37–46. https://doi.org/10.1148/radiol.2017170745.

    Article  PubMed  Google Scholar 

  28. Kopans DB. Digital breast tomosynthesis from concept to clinical care. AJR Am J Roentgenol. 2014;202:299–308. https://doi.org/10.2214/AJR.13.11520.

    Article  PubMed  Google Scholar 

  29. •• Horvat JV, Keating DM, Rodrigues-Duarte H, Morris EA, Mango VL. Calcifications at digital breast tomosynthesis: imaging features and biopsy techniques. Radiographics. 2019;39:307–18. https://doi.org/10.1148/rg.2019180124A review of the appearance of calcifications on digital breast tomosynthesis.

    Article  PubMed  Google Scholar 

  30. Hwang E, Szabo J, Sonnenblick EB, Margolies LR. Variable appearances of ductal carcinoma in situ calcifications on digital mammography, synthesized mammography, and tomosynthesis: a pictorial essay. Can Assoc Radiol J. 2018;69:2–9. https://doi.org/10.1016/j.carj.2017.04.005.

    Article  PubMed  Google Scholar 

  31. Berger N, Schwizer SD, Varga Z, Rageth C, Frauenfelder T, Boss A. Assessment of the extent of microcalcifications to predict the size of a ductal carcinoma in situ: comparison between tomosynthesis and conventional mammography. Clin Imaging. 2016;40:1269–73. https://doi.org/10.1016/j.clinimag.2016.09.003.

    Article  PubMed  Google Scholar 

  32. Bernardi D, Caumo F, Macaskill P, et al. Effect of integrating 3D-mammography (digital breast tomosynthesis) with 2D-mammography on radiologists’ true-positive and false-positive detection in a population breast screening trial. Eur J Cancer. 2014;50:1232–8. https://doi.org/10.1016/j.ejca.2014.02.004.

    Article  PubMed  Google Scholar 

  33. Tagliafico A, Mariscotti G, Durando M, et al. Characterisation of microcalcification clusters on 2D digital mammography (FFDM) and digital breast tomosynthesis (DBT): does DBT underestimate microcalcification clusters? Results of a multicentre study. Eur Radiol. 2015;25:9–14. https://doi.org/10.1007/s00330-014-3402-8.

    Article  PubMed  Google Scholar 

  34. Ikeda DM, Andersson I. Ductal carcinoma in situ: atypical mammographic appearances. Radiology. 1989;172:661–6. https://doi.org/10.1148/radiology.172.3.2549563.

    Article  CAS  PubMed  Google Scholar 

  35. •• Horvat JV, Keating DM, Rodrigues-Duarte H, Morris Wang LC, Sullivan M, Du H, et al. US appearance of ductal carcinoma in situ. Radiographics. 2013;33:213–28. https://doi.org/10.1148/rg.331125092A review of the appearance of DCIS on ultrasound.

    Article  Google Scholar 

  36. Watanabe T, Yamaguchi T, Tsunoda H, et al. Ultrasound image classification of ductal carcinoma in situ (DCIS) of the breast: analysis of 705 DCIS lesions. Ultrasound Med Biol. 2017;43:918–25. https://doi.org/10.1016/j.ultrasmedbio.2017.01.008.

    Article  PubMed  Google Scholar 

  37. • Mesurolle B, El-Khoury M, Khetani K, Abdullah N, Joseph L, Kao E. Mammographically non-calcified ductal carcinoma in situ: sonographic features with pathological correlation in 35 patients. Clin Radiol. 2009;64:628–36. https://doi.org/10.1016/j.crad.2008.12.013Unique ultrasound presentation of DCIS.

    Article  CAS  PubMed  Google Scholar 

  38. Moon HJ, Kim EK, Kim MJ, Yoon JH, Park VY. Comparison of clinical and pathologic characteristics of ductal carcinoma in situ detected on mammography versus ultrasound only in asymptomatic patients. Ultrasound Med Biol. 2019;45:68–77. https://doi.org/10.1016/j.ultrasmedbio.2018.09.003.

    Article  PubMed  Google Scholar 

  39. Moon WK, Im JG, Koh YH, Noh DY, Park IA. US of mammographically detected clustered microcalcifications. Radiology. 2000;217:849–54. https://doi.org/10.1148/radiology.217.3.r00nv27849.

    Article  CAS  PubMed  Google Scholar 

  40. Yu PC, Lee YW, Chou FF, et al. Clustered microcalcifications of intermediate concern detected on digital mammography: ultrasound assessment. Breast. 2011;20:495–500. https://doi.org/10.1016/j.breast.2011.05.003.

    Article  PubMed  Google Scholar 

  41. Moon WK, Myung JS, Lee YJ, Park IA, Noh DY, Im JG. US of ductal carcinoma in situ. Radiographics. 2002;22:269–80; discussion 280-261. https://doi.org/10.1148/radiographics.22.2.g02mr16269.

    Article  PubMed  Google Scholar 

  42. Soo MS, Baker JA, Rosen EL. Sonographic detection and sonographically guided biopsy of breast microcalcifications. AJR Am J Roentgenol. 2003;180:941–8. https://doi.org/10.2214/ajr.180.4.1800941.

    Article  PubMed  Google Scholar 

  43. •• Kuhl CK, Schrading S, Bieling HB, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet. 2007;370:485–92. https://doi.org/10.1016/S0140-6736(07)61232-XDemonstrates the excellent sensitivity of MRI for the detection of DCIS, using modern MRI equipment.

    Article  PubMed  Google Scholar 

  44. Lehman CD, Gatsonis C, Kuhl CK, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med. 2007;356:1295–303. https://doi.org/10.1056/NEJMoa065447.

    Article  CAS  PubMed  Google Scholar 

  45. Berg WA, Gutierrez L, NessAiver MS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004;233:830–49. https://doi.org/10.1148/radiol.2333031484.

    Article  PubMed  Google Scholar 

  46. Marcotte-Bloch C, Balu-Maestro C, Chamorey E, et al. MRI for the size assessment of pure ductal carcinoma in situ (DCIS): a prospective study of 33 patients. Eur J Radiol. 2011;77:462–7. https://doi.org/10.1016/j.ejrad.2009.09.003.

    Article  CAS  PubMed  Google Scholar 

  47. Proulx F, Correa JA, Ferre R, et al. Value of pre-operative breast MRI for the size assessment of ductal carcinoma in situ. Br J Radiol. 2016;89:20150543. https://doi.org/10.1259/bjr.20150543.

    Article  PubMed  Google Scholar 

  48. • Pickles MD, Gibbs P, Hubbard A, Rahman A, Wieczorek J, Turnbull LW. Comparison of 3.0 T magnetic resonance imaging and X-ray mammography in the measurement of ductal carcinoma in situ: a comparison with histopathology. Eur J Radiol. 2015;84:603–10. https://doi.org/10.1016/j.ejrad.2014.12.016Improved estimates of the extent of disease using 3T MRI systems compared to mammography.

    Article  PubMed  Google Scholar 

  49. Rahbar H, DeMartini WB, Lee AY, Partridge SC, Peacock S, Lehman CD. Accuracy of 3 T versus 1.5 T breast MRI for pre-operative assessment of extent of disease in newly diagnosed DCIS. Eur J Radiol. 2015;84:611–6. https://doi.org/10.1016/j.ejrad.2014.12.029.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jansen SA, Newstead GM, Abe H, Shimauchi A, Schmidt RA, Karczmar GS. Pure ductal carcinoma in situ: kinetic and morphologic MR characteristics compared with mammographic appearance and nuclear grade. Radiology. 2007;245:684–91. https://doi.org/10.1148/radiol.2453062061.

    Article  PubMed  Google Scholar 

  51. Menell JH, Morris EA, Dershaw DD, Abramson AF, Brogi E, Liberman L. Determination of the presence and extent of pure ductal carcinoma in situ by mammography and magnetic resonance imaging. Breast J. 2005;11:382–90. https://doi.org/10.1111/j.1075-122X.2005.00121.x.

    Article  PubMed  Google Scholar 

  52. Rosen EL, Smith-Foley SA, DeMartini WB, Eby PR, Peacock S, Lehman CD. BI-RADS MRI enhancement characteristics of ductal carcinoma in situ. Breast J. 2007;13:545–50. https://doi.org/10.1111/j.1524-4741.2007.00513.x.

    Article  PubMed  Google Scholar 

  53. Buadu LD, Murakami J, Murayama S, et al. Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology. 1996;200:639–49. https://doi.org/10.1148/radiology.200.3.8756909.

    Article  CAS  PubMed  Google Scholar 

  54. Jansen SA, Paunesku T, Fan X, et al. Ductal carcinoma in situ: X-ray fluorescence microscopy and dynamic contrast-enhanced MR imaging reveals gadolinium uptake within neoplastic mammary ducts in a murine model. Radiology. 2009;253:399–406. https://doi.org/10.1148/radiol.2533082026.

    Article  PubMed  PubMed Central  Google Scholar 

  55. D’Orsi CJSE, Mendelson EB, Morris EA, et al. ACR BI-RADS® atlas, breast imaging reporting and data system. Reston: American College of Radiology; 2013.

    Google Scholar 

  56. Tozaki M, Igarashi T, Fukuda K. Breast MRI using the VIBE sequence: clustered ring enhancement in the differential diagnosis of lesions showing non-masslike enhancement. AJR Am J Roentgenol. 2006;187:313–21. https://doi.org/10.2214/ajr.05.0881.

    Article  PubMed  Google Scholar 

  57. Esserman LJ, Kumar AS, Herrera AF, et al. Magnetic resonance imaging captures the biology of ductal carcinoma in situ. J Clin Oncol. 2006;24:4603–10. https://doi.org/10.1200/JCO.2005.04.5518.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Baur A, Bahrs SD, Speck S, et al. Breast MRI of pure ductal carcinoma in situ: sensitivity of diagnosis and influence of lesion characteristics. Eur J Radiol. 2013;82:1731–7. https://doi.org/10.1016/j.ejrad.2013.05.002.

    Article  PubMed  Google Scholar 

  59. Liu H, Peng W. MRI morphological classification of ductal carcinoma in situ (DCIS) correlating with different biological behavior. Eur J Radiol. 2012;81:214–7. https://doi.org/10.1016/j.ejrad.2010.12.084.

    Article  PubMed  Google Scholar 

  60. Fancellu A, Turner RM, Dixon JM, Pinna A, Cottu P, Houssami N. Meta-analysis of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ. Br J Surg. 2015;102:883–93. https://doi.org/10.1002/bjs.9797.

    Article  CAS  PubMed  Google Scholar 

  61. • Lehman CD, Gatsonis C, Romanoff J, et al. Association of magnetic resonance imaging and a 12-gene expression assay with breast ductal carcinoma in situ treatment. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2018.6269A prospective multi-center trial demonstrating that MRI alone accounts for a minority of conversion to mastectomy.

    Article  Google Scholar 

  62. Luo J, Hippe DS, Rahbar H, Parsian S, Rendi MH, Partridge SC. Diffusion tensor imaging for characterizing tumor microstructure and improving diagnostic performance on breast MRI: a prospective observational study. Breast Cancer Res. 2019;21:102. https://doi.org/10.1186/s13058-019-1183-3.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Balleyguier C, Dunant A, Ceugnart L, et al. Preoperative breast magnetic resonance imaging in women with local ductal carcinoma in situ to optimize surgical outcomes: results from the randomized phase III trial IRCIS. J Clin Oncol. 2019;37:885–92. https://doi.org/10.1200/JCO.18.00595.

    Article  PubMed  Google Scholar 

  64. Esserman L, Yau C. Rethinking the standard for ductal carcinoma in situ treatment. JAMA Oncol. 2015;1:881–3. https://doi.org/10.1001/jamaoncol.2015.2607.

    Article  PubMed  Google Scholar 

  65. Chou SS, Gombos EC, Chikarmane SA, Giess CS, Jayender J. Computer-aided heterogeneity analysis in breast MR imaging assessment of ductal carcinoma in situ: correlating histologic grade and receptor status. J Magn Reson Imaging. 2017;46:1748–59. https://doi.org/10.1002/jmri.25712.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Luo J, Johnston BS, Kitsch AE, et al. Ductal carcinoma in situ: quantitative preoperative breast MR imaging features associated with recurrence after treatment. Radiology. 2017;285:788–97. https://doi.org/10.1148/radiol.2017170587.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Grimm LJ, Hwang ES. Active surveillance for DCIS: the importance of selection criteria and monitoring. Ann Surg Oncol. 2016;23:4134–6. https://doi.org/10.1245/s10434-016-5596-2.

    Article  PubMed  Google Scholar 

  68. Kuerer HM. Ductal carcinoma in situ: treatment or active surveillance? Expert Rev Anticancer Ther. 2015;15:777–85. https://doi.org/10.1586/14737140.2015.1043897.

    Article  CAS  PubMed  Google Scholar 

  69. Comparison of operative versus medical endocrine therapy for LOw Risk DCIS: the COMET Trial. In: Patient-Centered Outcomes Research Institute.

  70. LORIS A phase III trial of surgery versus active monitoring for low risk ductal carcinoma in situ (DCIS). In: University of Birmingham.

  71. Management of LOw-Risk DCIS (LORD). In: The Netherlands Cancer Institute.

  72. Grimm LJ, Ryser MD, Partridge AH, et al. Surgical upstaging rates for vacuum assisted biopsy proven DCIS: implications for active surveillance trials. Ann Surg Oncol. 2017;24:3534–40. https://doi.org/10.1245/s10434-017-6018-9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Soumian S, Verghese ET, Booth M, et al. Concordance between vacuum assisted biopsy and postoperative histology: implications for the proposed LOw Risk DCIS Trial (LORIS). Eur J Surg Oncol. 2013;39:1337–40. https://doi.org/10.1016/j.ejso.2013.09.028.

    Article  CAS  PubMed  Google Scholar 

  74. Aminololama-Shakeri S, Flowers CI, McLaren CE, et al. Can radiologists predict the presence of ductal carcinoma in situ and invasive breast cancer? AJR Am J Roentgenol. 2017;208:933–9. https://doi.org/10.2214/AJR.16.16073.

    Article  PubMed  Google Scholar 

  75. •• Shi B, Grimm LJ, Mazurowski MA, et al. Can occult invasive disease in ductal carcinoma in situ be predicted using computer-extracted mammographic features? Acad Radiol. 2017;24:1139–47. https://doi.org/10.1016/j.acra.2017.03.013The first study to apply deep learning techniques to the task of predicting upstaging of DCIS to invasive cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hwang E, Duong S, Bedrosian I, et al. Abstract GS5-05: primary endocrine therapy for ER-positive ductal carcinoma in situ (DCIS) CALGB 40903 (Alliance). Cancer Research. 2018;78:GS5-05-GS05-05. https://doi.org/10.1158/1538-7445.Sabcs17-gs5-05.

    Article  Google Scholar 

  77. Shi B, Grimm LJ, Mazurowski MA, et al. Prediction of occult invasive disease in ductal carcinoma in situ using deep learning features. J Am Coll Radiol. 2018;15:527–34. https://doi.org/10.1016/j.jacr.2017.11.036.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Harowicz MR, Saha A, Grimm LJ, et al. Can algorithmically assessed MRI features predict which patients with a preoperative diagnosis of ductal carcinoma in situ are upstaged to invasive breast cancer? J Magn Reson Imaging. 2017;46:1332–40. https://doi.org/10.1002/jmri.25655.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

R01CA203883 (Rahbar)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars J Grimm.

Ethics declarations

Conflict of Interest

Habib Rahbar reports grants from National Cancer Institute during the conduct of the study. Lars Grimm reports grants from Alliance Foundation Trial outside the submitted work. Nancy Ballantyne and Yun An Chen declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The funders had no role in the manuscript design, data analysis, decision to publish, or preparation of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nancy Ballantyne and Yun An Chen are co-first authors.

This article is part of the Topical Collection on Non-Invasive Breast Cancer Diagnosis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballantyne, N., Chen, Y.A., Rabhar, H. et al. Multimodality Imaging of Ductal Carcinoma In Situ. Curr Breast Cancer Rep 12, 26–35 (2020). https://doi.org/10.1007/s12609-019-00349-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-019-00349-9

Keywords

Navigation