Skip to main content
Log in

The Association between Objectively Measured Physical Activity and the Gut Microbiome among Older Community Dwelling Men

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

To determine the relationship between objectively measured physical activity (PA) and the gut microbiome among community-dwelling older men.

Design

Cross-sectional study.

Setting

Osteoporotic Fractures in Men (MrOS) cohort participants at Visit 4 (2014-16).

Participants

Eligible men (n=373, mean age 84 y) included participants with 5-day activity assessment with at least 90% wear time and analyzed stool samples.

Measurements

PA was measured with the SenseWear Pro3 Armband and stool samples analyzed for 16S v4 rRNA marker genes using Illumina MiSeq technology. Armband data together with sex, height, and weight were used to estimate total steps, total energy expenditure, and level of activity. 16S data was analyzed using standard UPARSE workflow. Shannon and Inverse Simpson indices were measures of (within-participant) α-diversity. Weighted and unweighted Unifrac were measures of (between-participant) β-diversity. We used linear regression analysis, principal coordinate analysis, zero-inflated Gaussian models to assess association between PA and α-diversity, β-diversity, and specific taxa, respectively, with adjustments for age, race, BMI, clinical center, library size, and number of chronic conditions.

Results

PA was not associated with α-diversity. There was a slight association between PA and β-diversity (in particular the second principal coordinate). Compared to those who were less active, those who had higher step counts had higher relative abundance of Cetobacterium and lower relative abundance of taxa from the genera Coprobacillus, Adlercreutzia, Erysipelotrichaceae CC-115 after multivariable adjustment including age, BMI, and chronic conditions. There was no consistent pattern by phylum.

Conclusion

There was a modest association between levels of PA and specific gut microbes among community-dwelling older men. The observed associations are consistent with the hypothesis that underlying health status and composition of the host microbiome are related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA, Joossens M, Cenit MC, Deelen P, Swertz MA, Weersma RK, Feskens EJ, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016;352:565–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr 2015;113 Suppl:S1–S5.

    Article  CAS  PubMed  Google Scholar 

  3. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559–563.

    Article  CAS  PubMed  Google Scholar 

  4. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van SD, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012;488:178–184.

    Article  CAS  PubMed  Google Scholar 

  5. Weir T. Exercise: The Next Frontier in Microbiota Research? Exerc Sport Sci Rev 2017;45:4–5.

    Article  PubMed  Google Scholar 

  6. Cerda B, Perez M, Perez-Santiago JD, Tornero-Aguilera JF, Gonzalez-Soltero R, Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front Physiol 2016;7:51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 2014;9:e92193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab 2016;310:E982–E993.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect 2013;121:725–730.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Haggblom MM, Lightfoot SA, Joseph LB, Kerkhof LJ. The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PLoS One 2016;11:e0150502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Batacan RB, Fenning AS, Dalbo VJ, Scanlan AT, Duncan MJ, Moore RJ, Stanley D. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats. J Appl Microbiol 2017;122:1627–1638.

    Article  CAS  PubMed  Google Scholar 

  12. Welly RJ, Liu TW, Zidon TM, Rowles JL, III, Park YM, Smith TN, Swanson KS, Padilla J, Vieira-Potter VJ. Comparison of Diet versus Exercise on Metabolic Function and Gut Microbiota in Obese Rats. Med Sci Sports Exerc 2016;48:1688–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang SS, Jeraldo PR, Kurti A, Miller ME, Cook MD, Whitlock K, Goldenfeld N, Woods JA, White BA, Chia N, Fryer JD. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener 2014;9:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petriz BA, Castro AP, Almeida JA, Gomes CP, Fernandes GR, Kruger RH, Pereira RW, Franco OL 6/21/2014 Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics 2014;15:511.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O’Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O’Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014;63:1913–1920.

    Article  CAS  PubMed  Google Scholar 

  16. Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, Shanahan F, Cotter PD, O’Sullivan O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 2017.

    Google Scholar 

  17. Bressa C, Bailen-Andrino M, Perez-Santiago J, Gonzalez-Soltero R, Perez M, Montalvo-Lominchar MG, Mate-Munoz JL, Dominguez R, Moreno D, Larrosa M 2017. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One 2017 12:e0171352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, Holscher HD, Woods JA. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc, 2017.

    Google Scholar 

  19. Orwoll E, Blank JB, Barrett-Connor E, Cauley J, Cummings S, Ensrud K, Lewis C, Cawthon PM, Marcus R, Marshall LM, McGowan J, Phipps K, Sherman S, Stefanick ML, Stone K. Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—a large observational study of the determinants of fracture in older men. Contemp Clin Trials 2005;26:569–585.

    Article  PubMed  Google Scholar 

  20. Blank JB, Cawthon PM, Carrion-Petersen ML, Harper L, Johnson JP, Mitson E, Delay RR. Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 2005;26:557–568.

    Article  PubMed  Google Scholar 

  21. Mackey DC, Manini TM, Schoeller DA, Koster A, Glynn NW, Goodpaster BH, Satterfield S, Newman AB, Harris TB, Cummings SR. Validation of an armband to measure daily energy expenditure in older adults. J Gerontol A Biol Sci Med Sci 2011;66:1108–1113.

    Article  PubMed  Google Scholar 

  22. Colbert LH, Matthews CE, Havighurst TC, Kim K, Schoeller DA. Comparative validity of physical activity measures in older adults. Med Sci Sports Exerc 2011;43:867–876.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van Remoortel H, Raste Y, Louvaris Z, Giavedoni S, Burtin C, Langer D, Wilson F, Rabinovich R, Vogiatzis I, Hopkinson NS, Troosters T. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PLoS One 2012;7:e39198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharif MM, Bahammam AS. Sleep estimation using BodyMedia’s SenseWear armband in patients with obstructive sleep apnea. Ann Thorac Med 2013;8:53–57.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 1993;46:153–162.

    Article  CAS  PubMed  Google Scholar 

  26. Rillamas-Sun E, LaCroix AZ, Bell CL, Ryckman K, Ockene JK, Wallace RB. The Impact of Multimorbidity and Coronary Disease Comorbidity on Physical Function in Women Aged 80 Years and Older: The Women’s Health Initiative. J Gerontol A Biol Sci Med Sci 2016;71 Suppl 1:S54–S61.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pahor M, Chrischilles EA, Guralnik JM, Brown SL, Wallace RB, Carbonin P. Drug data coding and analysis in epidemiologic studies. Eur J Epidemiol 1994;10:405–411.

    Article  CAS  PubMed  Google Scholar 

  28. Boucher B, Cotterchio M, Kreiger N, Nadalin V, Block T, Block G. Validity and reliability of the Block98 food-frequency questionnaire in a sample of Canadian women. Public Health Nutr 2006;9:84–93.

    Article  PubMed  Google Scholar 

  29. Rogers TS, Harrison S, Judd S, Orwoll ES, Marshall LM, Shannon J, Langsetmo L, Lane NE, Shikany JM. Dietary patterns and longitudinal change in hip bone mineral density among older men. Osteoporos Int 2018;29:1135–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abrahamson M, Hooker E, Ajami NJ, Petrosino JF, Orwoll ES. Successful collection of stool samples for microbiome analyses from a large community-based population of elderly men. Contemp Clin Trials Commun 2017;7:158–162.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005;71:8228–8235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H. Community Ecology Package (vegan), 2018.

    Google Scholar 

  33. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecology 2001;26:32–46.

    Google Scholar 

  34. McArdle BH, Anderson MJ. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 2001;82:290–297.

    Article  Google Scholar 

  35. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013;8:e61217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods 2013;10:1200–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F, Osawa R. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 2016;16:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut 1994;35:S35–S38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wrzosek L, Miquel S, Noordine ML, Bouet S, Joncquel Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 2013;11:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cushing K, Alvarado DM, Ciorba MA. Butyrate and Mucosal Inflammation: New Scientific Evidence Supports Clinical Observation. Clin Transl Gastroenterol 2015;6:e108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol 2011;45 Suppl:S120–S127.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. This manuscript is also the result of work supported with resources and use of facilities of the Minneapolis VA Health Care System. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the U.S. Department of Veterans Affairs or the United States government.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Lisa Langsetmo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langsetmo, L., Johnson, A., Demmer, R.T. et al. The Association between Objectively Measured Physical Activity and the Gut Microbiome among Older Community Dwelling Men. J Nutr Health Aging 23, 538–546 (2019). https://doi.org/10.1007/s12603-019-1194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-019-1194-x

Key words

Navigation