Skip to main content
Log in

Determining hydrothermal deactivation mechanisms on Cu/SAPO-34 NH3-SCR catalysts at low- and high-reaction regions: establishing roles of different reaction sites

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hydrothermal deactivation is a constant challenge in commercial catalytic process aimed at NOx emission control, which may be observed in the low (150–400 °C) or high (400–550 °C)-reaction regions. To the best of our knowledge, there is a lack of systematic research regarding the correlation between the reaction sites and the mechanism of hydrothermal degradation at various reaction regions. For a targeted investigation of this, Cu/zeolite catalysts have been prepared using different amounts of polyvinyl alcohol for adjusting their redox and acid properties. These catalysts exhibit hydrothermal deactivation in different reaction regions. No change is observed in the reaction mechanism even with hydrothermal deactivation, but various reaction sites determine the performance deterioration in the low- and high-reaction regions. The redox properties and weak acid sites affect the hydrothermal deactivation in the low-reaction region, whereas the moderate/strong acid sites related to the structure mainly influence the hydrothermal deactivation in the high-reaction region. This work provides several theoretical insights for optimizing the hydrothermal stabilities of Cu/zeolite catalysts.

Graphical abstract

摘要

高温水热老化后, 脱硝催化剂在不同反应区间(低温150–400 °C和高温 400–550 °C)表现出不同程度的性能劣化, 但目前仍缺乏对反应中心与不同反应区间高温水热失活机制关系的系统性研究. 因此, 本项工作通过不同含量的聚乙烯醇 (PVA) 来调节Cu/分子筛催化剂上氧化还原中心和酸中心的性质, 使催化剂分别在不同反应区间表现出高温水热失活. 研究结果表明, 高温水热失活未改变催化剂的反应机理, 但反应中心的性质差异造成了低温和高温反应区间不同的性能劣化情况. 氧化还原中心与弱酸中心共同导致低温反应区间的水热失活, 而与结构相关的中/强酸中心则是高温反应区间水热失活的主要原因. 本工作为优化Cu/分子筛脱硝催化剂在不同反应区间的高温水热稳定性提供了一定的理论依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han L, Cai S, Gao M, Hasegawa JY, Wang P, Zhang J, Shi L, Zhang D. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem Rev. 2019;119(19):10916.

    Article  CAS  Google Scholar 

  2. Zhang Y, Peng Y, Li K, Liu S, Chen J, Li J, Gao F, Peden CHF. Using transient FTIR spectroscopy to probe active sites and reaction intermediates for selective catalytic reduction of NO on Cu/SSZ-13 catalysts. ACS Catal. 2019;9(7):6137.

    Article  CAS  Google Scholar 

  3. Su W, Chang H, Peng Y, Zhang C, Li J. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures. Environ Sci Technol. 2015;49(1):467.

    Article  CAS  Google Scholar 

  4. Zhang T, Qiu F, Chang H, Li X, Li J. Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods. Catal Sci Technol. 2016;6(16):6294.

    Article  CAS  Google Scholar 

  5. Liu J, Zhao Z, Xu C, Liu J. Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis. Chin J Catal. 2019;40(10):1438.

    Article  CAS  Google Scholar 

  6. Borfecchia E, Beato P, Svelle S, Olsbye U, Lamberti C, Bordiga S. Cu-CHA-a model system for applied selective redox catalysis. Chem Soc Rev. 2018;47(22):8097.

    Article  CAS  Google Scholar 

  7. Shao X, Wang H, Yuan M, Yang J, Zhan W, Wang L, Guo Y, Lu G. Thermal stability of Si-doped V2O5/WO3–TiO2 for selective catalytic reduction of NOx by NH3. Rare Met. 2019;38(4):292.

    Article  CAS  Google Scholar 

  8. Zhang N, Li L, Guo Y, He J, Wu R, Song L, Zhang G, Zhao J, Wang D, He H. A MnO2-based catalyst with H2O resistance for NH3-SCR: study of catalytic activity and reactants-H2O competitive adsorption. Appl Catal B. 2020;270:118860.

    Article  CAS  Google Scholar 

  9. Xu S, Lin Q, Liu S, Lin J, Xu H, Wang J, Chen Y. Promotional effects of silanization on the hydrothermal stability of CuCe/BEA catalyst for selective catalytic reduction of NOx with NH3. Chin J Inorg Chem. 2020;36(12):2385.

    CAS  Google Scholar 

  10. Lin Q, Liu S, Xu S, Liu J, Xu H, Chen Y, Dan Y. Fabricate surface structure-stabilized Cu/BEA with hydrothermal-resistant via Si-deposition for NOx abatement. Mol Catal. 2020;495:111153.

    Article  CAS  Google Scholar 

  11. Feng X, Cao Y, Lan L, Lin C, Li Y, Xu H, Gong M, Chen Y. The promotional effect of Ce on CuFe/beta monolith catalyst for selective catalytic reduction of NOx by ammonia. Chem Eng J. 2016;302:697.

    Article  CAS  Google Scholar 

  12. Fan C, Chen Z, Pang L, Ming S, Dong C, Brou Albert K, Liu P, Wang J, Zhu D, Chen H, Li T. Steam and alkali resistant Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx in diesel exhaust. Chem Eng J. 2018;334:344.

    Article  CAS  Google Scholar 

  13. Fan D, Wang J, Yu T, Wang J, Hu X, Shen M. Catalytic deactivation mechanism research over Cu/SAPO-34 catalysts for NH3-SCR (I): the impact of 950 °C hydrothermal aging time. Chem Eng Sci. 2018;176:285.

    Article  CAS  Google Scholar 

  14. Leistner K, Kumar A, Kamasamudram K, Olsson L. Mechanistic study of hydrothermally aged Cu/SSZ-13 catalysts for ammonia-SCR. Catal Today. 2018;307:55.

    Article  CAS  Google Scholar 

  15. Tan J, Liu Z, He C, Liu X, Han X, Zhai R, Bao X. Study on the crystallization mechanism of molecular sieve SAPO-34. Chin J Catal. 1998;19(5):436.

    CAS  Google Scholar 

  16. Yin X, Chu N, Lu X, Li Z, Guo H. Studies on the formation of hierarchical zeolite T aggregates with well-defined morphology in different template systems. Solid State Sci. 2016;51:30.

    Article  CAS  Google Scholar 

  17. Chen Y, Rao W, Zhou R. Influence of surfactant (PVA) concentration on the preparation of copper nanoparticles by using electron beam-irradiation method. Chem Eng. 2007;12:4.

    CAS  Google Scholar 

  18. Xing A, Feng Q, Zhang X, Jian J. Development in crystallization mechanism and crystallization kinetics of SAPO-34 molecular sieves. Ind Catal. 2016;24(2):5.

    CAS  Google Scholar 

  19. Li Y, Han X, Hou Y, Guo Y, Liu Y, Cui Y, Huang Z. Role of CTAB in the improved H2O resistance for selective catalytic reduction of NO with NH3 over iron titanium catalyst. Chem Eng J. 2018;347:313.

    Article  CAS  Google Scholar 

  20. Li R, Wang P, Ma S, Yuan F, Li Z, Zhu Y. Excellent selective catalytic reduction of NOx by NH3 over Cu/SAPO-34 with hierarchical pore structure. Chem Eng J. 2020;379:122376.

    Article  CAS  Google Scholar 

  21. Du Q, Guo Y, Duan H, Li H, Chen Y, Liu H. Synthesis of hierarchical TS-1 zeolite via a novel three-step crystallization method and its excellent catalytic performance in oxidative desulfurization. Fuel. 2017;188:232.

    Article  CAS  Google Scholar 

  22. Du Q, Guo Y, Wu P, Liu H. Synthesis of hierarchically porous TS-1 zeolite with excellent deep desulfurization performance under mild conditions. Micropor Mesopor Mater. 2018;264:272.

    Article  CAS  Google Scholar 

  23. Paul G, Bisio C, Braschi I, Cossi M, Gatti G, Gianotti E, Marchese L. Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chem Soc Rev. 2018;47(15):5684.

    Article  CAS  Google Scholar 

  24. Zhou M, Liu X, Zhang B, Zhu H. Assembly of oriented zeolite monolayers and thin films on polymeric surfaces via hydrogen bonding. Langmuir. 2008;24:11942.

    Article  CAS  Google Scholar 

  25. Liu J, Luo Y, Li M, Shu X. Synthesis of nanosized SSZ-13 zeolite and performance of its mixed matrix membrane for CO2/CH4 separation. China Pet Process Pe. 2019;21(2):19.

    Google Scholar 

  26. Kumar M, Luo H, Román-Leshkov Y, Rimer JD. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J Am Chem Soc. 2015;137(40):13007.

    Article  CAS  Google Scholar 

  27. Wang C, Xu Q, Wang L, Zhan W, Guo Y, Guo Y. Effect of metal modification on NH3-SCR reaction performance of Cu-SAPO-34 catalyst. Chin J Rare Met. 2020;44(2):159.

    Google Scholar 

  28. Han M, Jiao Y, Zhou C, Guo Y, Guo Y, Lu G, Wang L, Zhan W. Catalytic activity of Cu-SSZ-13 prepared with different methods for NH3-SCR reaction. Rare Met. 2019;38(3):210.

    Article  CAS  Google Scholar 

  29. Chen P, Moos R, Simon U. Metal loading affects the proton transport properties and the reaction monitoring performance of Fe-ZSM-5 and Cu-ZSM-5 in NH3-SCR. J Phy Chem C. 2016;120(44):25361.

    Article  CAS  Google Scholar 

  30. Fan J, Ning P, Wang Y, Song Z, Liu X, Wang H, Wang J, Wang L, Zhang Q. Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction. Chem Eng J. 2019;369:908.

    Article  CAS  Google Scholar 

  31. Zhang J, Liu F, Liang J, Yu H, Liu W, Wang X, Peng H, Wu P. Exploring the nanosize effect of mordenite zeolites on their performance in the removal of NOx. Ind Eng Chem Res. 2019;58:8625.

    Article  CAS  Google Scholar 

  32. Ma L, Cheng Y, Cavataio G, McCabe RW, Fu L, Li J. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl Catal B. 2014;156–157:428.

    Article  CAS  Google Scholar 

  33. Chen P, Rauch D, Weide P, Schönebaum S, Simons T, Muhler M, Moos R, Simon U. The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts. Catal Sci Technol. 2016;6(10):3362.

    Article  CAS  Google Scholar 

  34. Cao Y, Fan D, Sun L, Yang M, Cao L, Sun T, Xu S, Tian P, Liu Z. The self-protection effect of reactant gas on the moisture stability of CuSAPO-34 catalyst for NH3-SCR. Chem Eng J. 2019;374:832.

    Article  CAS  Google Scholar 

  35. Lezcano-Gonzalez I, Deka U, Arstad B, Van Yperen-De DA, Hemelsoet K, Waroquier M, Van Speybroec V, Weckhuysen BM, Beale AM. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based ammonia selective catalytic reduction systems. Phys Chem Chem Phys. 2014;16(4):1639.

    Article  CAS  Google Scholar 

  36. Ryu T, Kim H, Hong SB. Nature of active sites in Cu-LTA NH3-SCR catalysts: a comparative study with Cu-SSZ-13. Appl Catal B. 2019;245:513.

    Article  CAS  Google Scholar 

  37. Jiang H, Guan B, Peng X, Zhan R, Lin H, Huang Z. Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction. Chem Eng J. 2020;379:122358.

    Article  Google Scholar 

  38. Ming S, Chen Z, Fan C, Pang L, Guo W, Albert KB, Liu P, Li T. The effect of copper loading and silicon content on catalytic activity and hydrothermal stability of Cu-SAPO-18 catalyst for NH3-SCR. Appl Catal A. 2018;599:47.

    Article  CAS  Google Scholar 

  39. Yu C, Huang B, Dong L, Chen F, Yang Y, Fan Y, Yang Y, Liu X, Wang X. Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature. Chem Eng J. 2017;316:1059.

    Article  CAS  Google Scholar 

  40. Deng W, Dai Q, Lao Y, Shi B, Wang X. Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO2-TiO2 mixed oxide catalysts. Appl Catal B. 2016;181:848.

    Article  CAS  Google Scholar 

  41. Shi X, Chu B, Wang F, Wei X, Teng L, Fan M, Li B, Dong L, Dong L. Mn-modified CuO, CuFe2O4, and gamma-Fe2O3 Three-phase strong synergistic coexistence catalyst system for NO reduction by CO with a wider active window. ACS Appl Mater Interf. 2018;10(47):40509.

    Article  CAS  Google Scholar 

  42. Shi Y, Wang X, Chen L, Li S, Wu C, Shan S, Li W. In situ DRIFT study on NH3 selective catalytic reduction of NO over HBEA zeolite doped with CeO2. Appl Surf Sci. 2020;506:144715.

    Article  CAS  Google Scholar 

  43. Cheng J, Han S, Ye Q, Cheng S, Kang T, Dai H. Selective catalytic reduction of NO with NH3 over the Cu/SAPO-34 catalysts derived from different Cu precursors. Micropor Mesopor Mater. 2019;278:423.

    Article  CAS  Google Scholar 

  44. Chen C, Cao Y, Liu S, Chen J, Jia W. The catalytic properties of Cu modified attapulgite in NH3-SCO and NH3-SCR reactions. Appl Surf Sci. 2019;480:537.

    Article  CAS  Google Scholar 

  45. Li G, Wang B, Wang H, Ma J, Xu WQ, Li Y, Han Y, Sun Q. Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH3-SCR. Catal Commun. 2018;108:82.

    Article  CAS  Google Scholar 

  46. Xu H, Lin C, Lin Q, Feng X, Zhang Z, Wang Y, Chen Y. Grain size effect on the high-temperature hydrothermal stability of Cu/SAPO-34 catalysts for NH3-SCR. J Environ Chem Eng. 2020;8(6):104559.

    Article  CAS  Google Scholar 

  47. Wang C, Yan W, Wang Z, Chen Z, Wang J, Wang J, Wang J, Shen M, Kang X. The role of alkali metal ions on hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts. Catal Today. 2020;355:482.

    Article  CAS  Google Scholar 

  48. Wang H, Xu R, Jin Y, Zhang R. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts. Catal Today. 2019;327:295.

    Article  CAS  Google Scholar 

  49. Chang H, Qin X, Ma L, Zhang T, Li J. Cu/SAPO-34 prepared by a facile ball milling method for enhanced catalytic performance in the selective catalytic reduction of NOx with NH3. Phys Chem Chem Phys. 2019;21(39):22113.

    Article  CAS  Google Scholar 

  50. Yang G, Du X, Ran J, Wang X, Chen Y, Zhang L, Rac V, Rakic V, Crittenden J. Irregular influence of alkali metals on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia. J Hazard Mater. 2020;387:122007.

    Article  CAS  Google Scholar 

  51. Su W, Li Z, Peng Y, Li J. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging. Phys Chem Chem Phys. 2015;17(43):29142.

    Article  CAS  Google Scholar 

  52. Shan Y, Shan W, Shi X, Du J, Yu Y, He H. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. Appl Catal B. 2020;264:118511.

    Article  CAS  Google Scholar 

  53. Wang A, Chen Y, Walter ED, Washton NM, Varga T, Wang Y, Szanyi J, Wang Y, Peden CHF, Gao F. Remarkable self-degradation of Cu/SAPO-34 selective catalytic reduction catalysts during storage at ambient conditions. Catal Today. 2021;360:367.

    Article  CAS  Google Scholar 

  54. Liu B, Yao D, Wu F, Wei L, Li X, Wang X. Experimental investigation on N2O formation during the selective catalytic reduction of NOx with NH3 over Cu-SSZ-13. Ind Eng Chem Res. 2019;58(45):20516.

    Article  CAS  Google Scholar 

  55. Zhu N, Lian Z, Zhang Y, Shan W, He H. The promotional effect of H2 reduction treatment on the low-temperature NH3-SCR activity of Cu/SAPO-18. Appl Surf Sci. 2019;483:536.

    Article  CAS  Google Scholar 

  56. Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev. 2015;44(20):7262.

    Article  CAS  Google Scholar 

  57. Gao F, Washton NM, Wang Y, Kollár M, Szanyi J, Peden CHF. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: implications for the active Cu species and the roles of Brønsted acidity. J Catal. 2015;331:25.

    Article  CAS  Google Scholar 

  58. Liu Q, Liu B, Liu Q, Xu R, Xia H. Lattice substitution and desulfurization kinetic analysis of Zn-based spinel sorbents loading onto porous silicoaluminophosphate zeolites. J Hazard Mater. 2020;383:121151.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22072098 and 21802099), Sichuan Science and Technology Program (No. 2021YJ0333) and the National Engineering Laboratory for Mobile Source Emission Control Technology (No. NELMS2017A06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Di Xu or Yi Dan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, QJ., Pei, MM., Yao, P. et al. Determining hydrothermal deactivation mechanisms on Cu/SAPO-34 NH3-SCR catalysts at low- and high-reaction regions: establishing roles of different reaction sites. Rare Met. 41, 1899–1910 (2022). https://doi.org/10.1007/s12598-021-01933-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01933-8

Keywords

Navigation