Skip to main content

Advertisement

Log in

Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Substituting liquid electrolytes with solid electrolytes is considered as an important strategy to solve the problem of flammability and explosion for traditional lithium-ion batteries (LIB). However, neither inorganic solid electrolytes (ISE) nor solid polymer electrolytes (SPE) alone can meet the operating requirements for room-temperature (RT) all-solid-state lithium metal batteries (ASSLMB). Here, we report a three-dimensional (3D) nanofiber framework reinforced polyethylene oxide (PEO)-based composite polymer electrolytes (CPE) through constructing a nanofiber framework combining polyacrylonitrile (PAN) and fast Li-ion conductor Li0.33La0.557TiO3 (LLTO) framework by electrospinning method. Meanwhile, the PEO electrolyte filled in the pores of the PAN/LLTO nanofiber framework can effectively isolate the direct contact between the chemically active Ti4+ in LLTO with lithium metal, thereby avoiding the occurrence of interfacial reactions. Enhanced electrochemical stability makes a wide electrochemical window up to 4.8 V with an ionic conductivity of about 9.87 × 10–5 S·cm−1 at RT. Benefiting from the excellent lithium dendrite growth inhibition ability of 3D PAN/LLTO nanofiber framework, especially when the mass of LLTO reaches twice that of the PAN, Li/Li symmetric cell could cycle stably for 1000 h without a short circuit. In addition, under 30 °C, the LiFePO4/Li ASSLMB using such CPE delivers large capacities of 156.2 and 140 mAh·g−1 at 0.2C and 0.5C, respectively. These results provide a new insight for the development of the next generation of safe, high-performance ASSLMBs.

Graphical Abstract

摘要

使用固体电解质代替液态电解质是解决锂离子电池安全问题的重要策略. 然而, 无论是无机固体电解质还是固体聚合物电解质都不能单独满足室温全固态锂金属电池的需求. 本文报道了—种三维纳米纤维增强的聚氧化乙烯 (PEO) 基复合聚合物电解质, 通过静电纺丝技术构建了结合聚丙烯腈 (PAN) 和Li+快离子导体Li0.33La0.557TiO3 (LLTO) 的纳米纤维 (3D PAN/LLTO), 并与PEO复合. 填充在PAN/LLTO纳米纤维框架孔隙中的PEO电解质可以有效隔断LLTO中活性Ti4+与金属锂的直接接触, 从而避免了界面反应的发生. 该复合电解质的电化学稳定窗口可达4.8V, 且在室温下的离子电导率约为9.87×10-5 S·cm−1. 得益于3D PAN/LLTO纳米纤维骨架优异的锂枝晶生长抑制能力, 当LLTO的质量达到PAN的两倍时, Li/Li对称电池可以稳定循环1000 h而不发生短路. 用该固态电解质组装的LiFePO4/Li全固态电池表现出较好的充放电性能, 在30 °C下具有156.2 mAh·g−1 (0.2C倍率) 和140 mAh·g−1 (0.5C倍率) 的比容量.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878.

    Article  CAS  Google Scholar 

  2. Hu J, He P, Zhang B, Wang B, Fan LZ. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 2020;26:283.

    Article  Google Scholar 

  3. Lu J, Liu Y, Yao P, Ding Z, Tang Q, Wu J, Ye Z, Huang K, Liu X. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chem Eng J. 2019;367:230

  4. Meyer WH. Polymer electrolytes for lithium-ion batteries. Adv Mater. 1998;10(6):439.

    Article  CAS  Google Scholar 

  5. Jia M, Bi Z, Shi C, Zhao N, Guo X. Polydopamine coated lithium lanthanum titanate in bilayer membrane electrolytes for solid lithium batteries. ACS Appl Mater Interf. 2020;12(41):46231.

    Article  CAS  Google Scholar 

  6. Luo S, Zhao E, Gu Y, Huang J, Zhang Z, Yang L,Hirano SI. Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries. Chem Eng J. 2021; 421(2):127771

  7. Huo H, Li X, Chen Y, Liang J, Deng S, Gao X, Doyle-Davis K, Li R, Guo X, Shen Y, Nan CW, Sun X. Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries. Energy Storage Mater. 2020;29:361.

    Article  Google Scholar 

  8. Siyal SH, Javed MS, Jatoi AH, Lan JL, Yu Y, Saleem M, Yang X. In situ curing technology for dual ceramic composed by organic-inorganic functional polymer gel electrolyte for dendritic-free and robust lithium-metal batteries. Adv Mater Interf. 2020;7(20):2000830.

    Article  CAS  Google Scholar 

  9. Yu H, Zhao J, Ben L, Zhan Y, Wu Y, Huang X. Dendrite-free lithium deposition with self-aligned columnar structure in a carbonate-ether mixed electrolyte. ACS Energy Lett. 2017;2(6):1296.

    Article  CAS  Google Scholar 

  10. Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, Nan CW, Armand M, Chen L, Xu K, Shi S. Mobile ions in composite solids. Chem Rev. 2020;120(9):4169.

    Article  CAS  Google Scholar 

  11. Li S, Zhang SQ, Shen L, Liu Q, Ma JB, Lv W, He YB, Yang QH. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci. 2020;7(5):1903088.

    Article  CAS  Google Scholar 

  12. Fan P, Liu H, Marosz V, Samuels NT, Suib SL, Sun L, Liao L. High performance composite polymer electrolytes for lithium-ion batteries. Adv Funct Mater. 2021;31(23):2101380.

    Article  CAS  Google Scholar 

  13. Yuan B, Wen K, Chen D, Liu Y, Dong Y, Feng C, Han Y, Han J, Zhang Y, Xia C, Sun A, He W. Composite separators for robust high rate lithium ion batteries. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202101420.

    Article  Google Scholar 

  14. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy. 2016;1(4):16030.

    Article  CAS  Google Scholar 

  15. Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14(10):1026.

    Article  CAS  Google Scholar 

  16. Zheng C, Zhang J, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W. Unprecedented self-healing effect of Li6PS5Cl-based all-solid-state lithium battery. Small. 2021. https://doi.org/10.1002/smll.202101326.

    Article  Google Scholar 

  17. Lee YG, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D-S, Shiratsuchi T, Sugimoto T, Ryu S, Ku JH, Watanabe T, Park Y, Aihara Y, Im D, Han IT. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat Energy. 2020;5(4):299.

    Article  CAS  Google Scholar 

  18. Ye L, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature. 2021;593(7858):218.

    Article  CAS  Google Scholar 

  19. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed. 2007;46(41):7778.

    Article  CAS  Google Scholar 

  20. Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev. 2014;43(13):4714.

    Article  CAS  Google Scholar 

  21. Su J, Huang X, Song Z, Xiu T, Badding ME, Jin J, Wen Z. Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. Ceram Int. 2019;45(12):14991.

    Article  CAS  Google Scholar 

  22. Liu Q, Geng Z, Han C, Fu Y, Li S, He YB, Kang F, Li B. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J Power Sour. 2018;389:120

  23. Xiang X, Liu Y, Chen F, Yang W, Yang J, Ma X, Chen D, Su K, Shen Q, Zhang L. Crystal structure and lithium ionic transport behavior of Li site doped Li7La3Zr2O12. J Eur Ceram Soc. 2020;40(8):3065.

    Article  CAS  Google Scholar 

  24. Li QH, Xu C, Huang B, Yin X. Sr2+-doped rhombohedral LiHf2(PO4)3 solid electrolyte for all-solid-state Li-metal battery. Rare Met. 2020;39(9):1092.

    Article  CAS  Google Scholar 

  25. Mong AL, Shi QX, Jeon H, Ye YS, Xie XL, Kim D. Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications. Adv Funct Mater. 2021;31(12):2008586.

    Article  CAS  Google Scholar 

  26. Tang S, Guo W, Fu Y. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv Energy Mater. 2021;11(2):2000802.

    Article  CAS  Google Scholar 

  27. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2(4):16103.

    Article  CAS  Google Scholar 

  28. Wan J, Xie J, Mackanic DG, Burke W, Bao Z, Cui Y. Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano. 2018;4:1.

    Article  CAS  Google Scholar 

  29. Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021;40(2):409.

    Article  CAS  Google Scholar 

  30. Fu X, Shang C, Yang M, Akinoglu EM, Wang X, Zhou G. An ion-conductive separator for high safety Li metal batteries. J Power Sources. 2020;475:228687

  31. Huo H, Li X, Sun Y, Lin X, Doyle-Davis K, Liang J, Gao X, Li R, Huang H, Guo X,Sun X. Li2CO3 effects: new insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy. 2020;73:104836

  32. Liu W, Lee SW, Lin D, Shi F, Wang S, Sendek AD, Cui Y. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy. 2017;2(5):17035.

    Article  CAS  Google Scholar 

  33. Zhu P, Yan C, Zhu J, Zang J, Li Y, Jia H, Dong X, Du Z, Zhang C, Wu N, Dirican M, Zhang X. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 2019;17:220.

    Article  Google Scholar 

  34. Xu H, Zhang X, Jiang J, Li M, Shen Y. Ultrathin Li7La3Zr2O12@PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery. Solid State Ionics. 2020;347:115227

  35. Zhu P, Yan C, Dirican M, Zhu J, Zang J, Selvan RK, Chung CC, Jia H, Li Y, Kiyak Y, Wu N,Zhang X. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A. 2018;6(10):427

  36. Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv Energy Mater. 2019;9(17):1804004.

    Article  Google Scholar 

  37. Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang QH, Kang F, He YB. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Funct Mater. 2019;29(1):1805301.

    Article  Google Scholar 

  38. Li D, Chen L, Wang T, Fan LZ. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl Mater Interf. 2018;10(8):7069.

    Article  CAS  Google Scholar 

  39. Bi J, Mu D, Wu B, Fu J, Yang H, Mu G, Zhang L,Wu F. A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. J Mater Chem A. 2020;8(2):706

  40. Hu S, Du L, Zhang G, Zou W, Zhu Z, Xu L, Mai L. Open-structured nanotubes with three-dimensional ion-accessible pathways for enhanced Li+ conductivity in composite solid electrolytes. ACS Appl Mater Interf. 2021;13(11):13183.

    Article  CAS  Google Scholar 

  41. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. 2019;18(12):1278.

    Article  CAS  Google Scholar 

  42. Huang F, Liu W, Li P, Ning J, Wei Q. Electrochemical properties of LLTO/fluoropolymer-shell cellulose-core fibrous membrane for separator of high performance lithium-ion battery. Materials. 2016;9(2):75.

    Article  Google Scholar 

  43. Zhang N, Wang G, Feng M, Fan LZ. In situ generation of a soft–tough asymmetric composite electrolyte for dendrite-free lithium metal batteries. J Mater Chem A. 2021;9(7):4018.

    Article  CAS  Google Scholar 

  44. Gao L, Li J, Ju J, Cheng B, Kang W, Deng N. Polyvinylidene fluoride nanofibers with embedded Li6.4La3Zr1.4Ta0.6O12 fillers modified polymer electrolytes for high-capacity and long-life all-solid-state lithium metal batteries. Compos Sci Technol. 2020;200:108408

  45. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc. 2016;138(30):9385.

    Article  CAS  Google Scholar 

  46. Li Y, Xu B, Xu H, Duan H, Lü X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough JB. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed. 2017;56(3):753.

    Article  CAS  Google Scholar 

  47. Bae J, Li Y, Zhao F, Zhou X, Ding Y, Yu G. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 2018;15:46.

    Article  Google Scholar 

  48. Chen L, Li Y, Li SP, Fan LZ, Nan CW, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy. 2018;46:176.

    Article  CAS  Google Scholar 

  49. Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough JB. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv Mater. 2019;31(4):1805574.

    Article  Google Scholar 

  50. Gao L, Li J, Ju J, Wang L, Yan J, Cheng B, Kang W, Deng N, Li Y. Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries. Chem Eng J. 2020;389:124478.

Download references

Acknowledgements

This work was financially supported by Zhejiang Provincial Natural Science Foundation of China (No. LR20E020002) and the National Natural Science Foundation of China (Nos. U20A20253 and 21972127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Kui Zhang or Jun Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, TQ., Wang, C., Zhang, WK. et al. Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Met. 41, 1870–1879 (2022). https://doi.org/10.1007/s12598-021-01891-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01891-1

Keywords

Navigation