Skip to main content
Log in

Spherical modification of tungsten powder by particle composite system

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Owing to contradiction between increasing demand of spherical tungsten powder and limitation of traditional manufacturing technology, a novel preparation method was developed to sphericize the polygonal tungsten powder by means of modification of particle composite system. Tungsten powder particles were modified by particle composite system, and detailed characterization by scanning electron microscopy (SEM) was studied. Particle size distribution and function mechanism were analyzed, and the internal relationship between average diameter and processing time was discussed. The results show that the spherical tungsten powder with an average diameter of 6.41 μm is obtained from polyhedral tungsten powder with an average diameter of 7.50 μm. The spherical effect could be achieved (sharp edge angles of particles are rounded off and reshaped) when the processing time is over 30 min. The relationship between average diameter (d) and processing time can be described by the exponential decay model, which provides a good interpretation for the process of modification. The relationship between them can be expressed by the equation d = 1.87406exp(−x/8.92718) + 6.4182. The proposed method could readily enable large-scale production of spherical tungsten powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khan AA, Labbe JC, Grimaud A, Fauchais P. Molybdenum and tungsten coatings for X-ray targets obtained through the low-pressure plasma spraying process. J Therm Spray Technol. 1997;6(2):228.

    Article  CAS  Google Scholar 

  2. Bao J, Wan B. The tungsten powder study of the dispenser cathode. Appl Surf Sci. 2006;252(16):5873.

    Article  CAS  Google Scholar 

  3. Davis JW, Barabash VR, Makhankov A, Plöchl L, Slattery KT. Assessment of tungsten for use in the ITER plasma facing components. J Nucl Mater. 1998;258(263):308.

    Article  Google Scholar 

  4. Zhang H, Li DY. Effects of sputtering condition on tribological properties of tungsten coatings. Wear. 2003;255(7):924.

    Article  CAS  Google Scholar 

  5. Wang CC, Jia CC, Gao P, Gai GS, Yang YF. Spherical modification of tungsten oxide powder and its mechanism analysis. Rare Met. 2015;34(3):183.

    Article  Google Scholar 

  6. Song GM, Zhou Y, Wang YJ. Effect of carbide particles on the ablation properties of tungsten composites. Mater Charact. 2003;50(4):293.

    Article  CAS  Google Scholar 

  7. Song GM, Wang YJ, Zhou Y. Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications. Int J Refract Met Hard Mater. 2003;21(1):1.

    Article  CAS  Google Scholar 

  8. Yamanaka K, Mori M, Kuramoto K, Chiba A. Development of new Co–Cr–W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater Des. 2014;55(3):987.

    Article  CAS  Google Scholar 

  9. Okuyama F. Crystalline tungsten grown by reducing vapor-deposited tungsten oxide. J Cryst Growth. 1977;38(1):103.

    Article  CAS  Google Scholar 

  10. Brion D, Tonnerre JC, Shroff A. Electron emission and surface composition of osmium and osmium-tungsten coated dispenser cathodes. Appl Surf Sci. 1985;20(4):429.

    Article  CAS  Google Scholar 

  11. Baloukas B, Lamarre JM, Martinu L. Electrochromic interference filters fabricated from dense and porous tungsten oxide films. Sol Energy Mater Sol Cells. 2011;95(3):807.

    Article  CAS  Google Scholar 

  12. Perchthaler M, Ossiander T, Juhart V, Mitzel J, Heinzl C, Scheu C, Hacker V. Tungsten materials as durable catalyst supports for fuel cell electrodes. J Power Sources. 2013;243(12):472.

    Article  CAS  Google Scholar 

  13. Park DY, Oh YJ, Kwon YS, Lim ST, Park SJ. Development of non-eroding rocket nozzle throat for ultra-high temperature environment. Int J Refract Met Hard Mater. 2014;42(1):205.

    Article  CAS  Google Scholar 

  14. Niu Y, Zheng X, Ji H, Qi LG, Ding CX, Chen JL, Luo GN. Microstructure and thermal property of tungsten coatings prepared by vacuum plasma spraying technology. Fusion Eng Des. 2010;85(7):1521.

    Article  CAS  Google Scholar 

  15. Pusavec F. Porous tungsten machining under cryogenic conditions. Int J Refract Met Hard Mater. 2012;35(11):84.

    Article  CAS  Google Scholar 

  16. Wenwei J, Chongen P. Investigation of process for spherical tungsten powder by plasma atomization. Cem Carbide. 2000;17(2):85.

    Google Scholar 

  17. Tao Y, Feng D, Zhang YW, Zhang Y, Zhang FG, Chen SD. Study on the production process of spherical Ni-based super-alloy powder for special applications. Powder Metall Ind. 2003;13(5):12.

    CAS  Google Scholar 

  18. Gai GS, Yang YF, Jin L, Zou X, Wu YX. Particle shape modification and related property improvements. Powder Technol. 2008;183(1):115.

    Article  CAS  Google Scholar 

  19. Peng ZH, Li HG. Behaviours of local priority reoxidation of tungsten powder-a study. Min Metall Eng. 1999;19(2):60.

    Google Scholar 

  20. Smith RW, Kim M, Kapoor D. Structure and properties of spray formed tungsten base composites. In: 5th International Conference on Advanced Particulate Materials and Processes, West Palm Beach; 1997. 219.

  21. White GD, Gurwell WE. Freeze dried tungsten heavy alloys. Adv Powder Metall. 1989;1:355.

    Google Scholar 

  22. Boulos M. Plasma power can make better powders. Met Powder Rep. 2004;59(5):16.

    Article  Google Scholar 

  23. Guo SQ, Ge CC, Feng YB, Zhou ZJ. Research on low-cost plasma spheroidization technology for spherical tungsten powder used in thermal spraying. Powder Metall Ind. 2010;20(3):1.

    CAS  Google Scholar 

  24. Sheng YW, Hao JY, Guo ZM, Shao HP, Huang H. Preparation of spherical tungsten powder by RF induction plasma. Rare Met Mater Eng. 2011;40(11):2033.

    CAS  Google Scholar 

  25. Jiang XL, Boulos M. Induction plasma spheroidization of tungsten and molybdenum powders. Trans Nonferrous Met Soc China. 2006;16(1):13.

    Article  CAS  Google Scholar 

  26. Fu XM. Submicron spherical tungsten powder prepared with ammonium paratungstate through the circulatory oxidization-reduction method. Rare Met Mater Eng. 2010;39(S1):468.

    Google Scholar 

  27. Qiu WT, Li Z, Xiao Z, Gong S, Lei Q. Sphericizing tungsten particles by means of localized preferential oxidation and alkaline washing. Powder Technol. 2012;228(9):187.

    Article  CAS  Google Scholar 

  28. Liu XB, Jia CC, Chen CH, Gai GS. Fabrication of nano-Al2O3/Cu composite with powder treated by spherical process. J Iron Steel Res. 2007;14(1):94.

    Article  Google Scholar 

  29. Tanaka T, Kikuchi Y, Ono K. Powder surface modification machine of high speed impact method Nara hybridization system and application. Chem Ind Eng Prog. 1993;7(4):003.

    Google Scholar 

  30. Ukita K, Kuroda M, Honda H, Koishi M. Characterization of powder-coated microsponge prepared by dry impact blending method. Chem Pharm Bull. 1989;37(12):3367.

    Article  CAS  Google Scholar 

  31. Wang JM, Wang XB. The change of behavior of powder during the course of ball milling. J Gansu Univ Technol. 1999;25(1):26.

    Google Scholar 

  32. Gai GS. Micro-Nanometer Particle Composition and Functional Design. Beijing: Tsinghua University Press; 2008. 271.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the International Science and Technology Cooperation Program of China (No. 2010DFR50360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Chang Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CC., Jia, CC., Gao, P. et al. Spherical modification of tungsten powder by particle composite system. Rare Met. 41, 1972–1976 (2022). https://doi.org/10.1007/s12598-015-0546-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0546-x

Keywords

Navigation