Skip to main content
Log in

Stochastic supply chain, transportation models: implementations and benefits

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

To transport the commodities in minimum time with maximum safety, the difficulties arise due to mutiny, territory slide, bad road and crashed communication systems, etc. and to overcome these kind of problems, the stochastic solid transportation models with safety and time objective functions under essential constraints are formulated. Taking expected value criterion, Chance-constrained programming technique, uniform distribution \( {\mathfrak{U}}\left( {a,b} \right) \), exponential distribution \( {\mathcal{E}\mathcal{X}\mathcal{P}}\left( \beta \right) \) and normal distribution \( {\mathcal{N}}\left( {\mu ,\sigma^{2} } \right) \), four new de-randomization processes are proposed to handle the stochastic programming problem. Finally, the deterministic form of the model is solved using generalized reduced gradient techniques (LINGO.13.0 optimization software). Finally, an enlarge comparison of the proposed concept with the earlier concept are presented and the nature of the solutions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee, H.L., Padmanabhan, V., Whang, S.: Information distortion in the supply chain: the bullwhip effect. Manage. Sci. 50, 1875–1886 (2004)

    Article  Google Scholar 

  2. Svensson, G.: The bullwhip effect in intra-organisational echelons. Int. J. Phys. Distrib. Logist. Manag. 33(2), 103–131 (2003)

    Article  Google Scholar 

  3. Bagchi, P.K., Ha, B.C., Skjoett-Larsen, T., Soerensen, L.B.: Supply chain integration: a European survey. Int. J. Logist. Manag. 16, 275–294 (2005)

    Article  Google Scholar 

  4. Croxton, K.L., García-Dastugue, S.J., Lambert, D.M., Rogers, D.S.: The supply chain management processes. Int. J. Logist. Manag. 12, 13–36 (2001)

    Article  Google Scholar 

  5. Min, S., Roath, A.S., Daugherty, P.J., Genchev, S.E., Chen, H., Arndt, A.D., Richey, R.G.: Supply chain collaboration: What’s happening? Int. J. Logist. Manag. 16, 237–256 (2005)

    Article  Google Scholar 

  6. Beamon, B.M.: Humanitarian relief chains: Issues and challenges. In: Proceedings of the 34th International Conference on Computers and Industrial Engineering. San Francisco, CA, USA (2004)

  7. Tomasini, R.M., van Wassenhove, L.N.: Pan-American health organization’s humanitarian supply management system: de-politicization of the humanitarian supply chain by creating accountability. J. Public Procure. 4, 437–449 (2004)

    Article  Google Scholar 

  8. Lee, H.W., Zbinden, M.: Marrying logistics and technology for effective relief. Forced Migr. Rev. 18, 34–45 (2003)

    Google Scholar 

  9. Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20, 224–230 (1941)

    Article  Google Scholar 

  10. Shell, E.: Distribution of a product by several properties. In: Proceedings of the Second Symposium in Linear Programming, Directorate of Management Analysis, DCS/Comptroller H.Q.U.S.A.F., vol. 2, pp. 615–642. Washington, DC. (1955)

  11. Haley, K.B.: The solid transportation problem. Oper. Res. 10, 448–463 (1962)

    Article  Google Scholar 

  12. Liu, B.: Theory and Practice of Uncertain Programing. Physica-Verlag, Heidelberg (2002)

    Book  Google Scholar 

  13. Kundu, P., Kar, S., Maiti, M.: Fixed charge transportation problem with type-2 fuzzy variable. Inf. Sci. 255, 170–186 (2014)

    Article  Google Scholar 

  14. Yang, L., Liu, L.: Fuzzy fixed charge solid transportation problem and algorithm. Appl. Soft Comput. 7, 879–889 (2007)

    Article  Google Scholar 

  15. Kundu, P., Kar, S., Maiti, M.: Multi-objective multi-item solid transportation problem in fuzzy environment. Appl. Math. Modell. 37, 2028–2038 (2012)

    Article  Google Scholar 

  16. Molla-Alizadeh-Zavardehi, S., Sadi Nazhad, S., Tavakkoli-Moghaddam, R., Yazdani, M.: Solving a fuzzy fixed charge solid transportation problem and by metaheuristics. Math. Comput. Modell. 57, 1543–1558 (2013)

    Article  Google Scholar 

  17. Liu, P., Yang, L., Wang, L., Liu, S.: A solid transportation problem with type-2 fuzzy variables. Appl. Soft Comput. 24, 543–558 (2014)

    Article  Google Scholar 

  18. Yang, L., Liu, P., Li, S., Gao, Y., Ralescu, D.A.: Reduction method of type-2 uncertain variables and their applications to solid transportation problems. Inf. Sci. 291, 204–237 (2015)

    Article  Google Scholar 

  19. Giri, P.K., Maiti, M.K., Maiti, M.: Fully fuzzy fixed charge multi-item solid transportation problem. Appl. Soft Comput. 27, 77–91 (2015)

    Article  Google Scholar 

  20. Kall, P.: Stochastic Linear Programming. Springer, Berlin (1976)

    Book  Google Scholar 

  21. Liu, B.: Uncertain Programing. Wiley, New York (1999)

    Google Scholar 

  22. Baidya, A., Bera, U.K., Maiti, M.: Solution of multi-item interval valued solid transportation problem with safety measure using different methods. OPSEARCH 51, 1–22 (2014)

    Article  Google Scholar 

  23. Gen, M., Altiparmak, F., Lin, L.: A genetic algorithm for two-stage transportation problem using priority-based encoding. OR Spectrum 28, 337–354 (2006)

    Article  Google Scholar 

  24. Amiri, Ali: Designing a distribution network in a supply chain system: formulation and efficient solution procedure. Eur. J. Oper. Res. 171, 567–576 (2006)

    Article  Google Scholar 

  25. Gani, N.A., Razak, A.K.: Two stage fuzzy transportation problem. J. Phys. Sci. 10, 63–69 (2006)

    Google Scholar 

  26. Sudhakar, V.J., Kumar, V.N.: Solving the multi-objective two stage fuzzy transportation problem by zero suffix method. J. Math. Res. 2(4), 135–140 (2010)

    Article  Google Scholar 

  27. Yang, L., Feng, Y.: A bi-criteria solid transportation problem with fixed charge under stochastic environment. Appl. Math. Model. 31, 2668–2683 (2007)

    Article  Google Scholar 

  28. Charnes, A., Copper, W.W.: Chance constrained programming. Manage. Sci. 6, 73–79 (1959)

    Article  Google Scholar 

  29. Chunlin, D., Liu, Y.: Sample average approximation method for chance constrained stochastic programming in transportation model of emergency management. Syst. Eng. Procedia 5, 137–143 (2012)

    Article  Google Scholar 

  30. Baidya, A., Bera, U.K., Maiti, M.: Interval oriented entropy based multi-item solid transportation problem with budget and breakability. Int. J. Appl. Comput. Math. 1, 279–292 (2015)

    Article  Google Scholar 

  31. Song, R., Zhao, H.: Study on bus dispatching based on chance-constraint. Math. Practice Theory 35, 89–92 (2005)

    Google Scholar 

  32. Li, F., Jin, C., Wang, L.: Quasi-linear stochastic programming model based on expectation and variance and its application in transportation problem. Appl. Math. Model. 38, 1919–1928 (2014)

    Article  Google Scholar 

  33. Ojha, A., Das, B., Mondal, S.K., Maiti, M.: A transportation problem with fuzzy-stochastic cost. Appl. Math. Model. 38, 1464–1481 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Baidya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidya, A. Stochastic supply chain, transportation models: implementations and benefits. OPSEARCH 56, 432–476 (2019). https://doi.org/10.1007/s12597-019-00370-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-019-00370-7

Keywords

Navigation