Skip to main content
Log in

An alternative approach for binary to decimal conversion of frequency encoded optical data using MZI-SOA Switch

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The conversion of binary data to its equivalent decimal counterpart and the vice-versa is very essential and necessary for all optical/electrical computing and data processing systems. In this paper, the authors propose a new scheme for the optical conversion of frequency encoded binary data to its equivalent frequency encoded decimal form based on the optical tree architecture. This is completely associated with frequency encoding technique because of its salient advantages. The scheme is implemented with all optical nonlinear switch like Mach–Zehnder interferometer-based semiconductor optical amplifier (MZI-SOA) to get a faster conversion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Mukhopadhyay, Role of optics in super-fast information processing. Indian J. Phys. 84(8), 1069–1074 (2010). https://doi.org/10.1007/s12648-010-0101-4

    Article  ADS  Google Scholar 

  2. B. Ghosh, R.R. Pal, S. Mukhopadhyay, An all-optical integrated system for implementing arithmetic operation in 2’s complement method with the active participation of non-linear material based switches. Indian J. Phys. 84(8), 1101–1109 (2010). https://doi.org/10.1007/s12648-010-0105-0

    Article  ADS  Google Scholar 

  3. S. Dey, S. Mukhopadhyay, All-optical high frequency clock pulse generator using the feedback mechanism in Toffoli gate with Kerr material. J. Nonlinear Opt. Phys. Mater. Matter 25, 1650012 (2016). https://doi.org/10.1142/S0218863516500120

    Article  ADS  Google Scholar 

  4. S. Sen, S. Mukhopadhyay, ‘A noble technique of using a specially cut LiNbO3 for achieving a greater amount phase difference between the components of light rays. Optik Int. J. Light Electron Opt. 124(11), 1011–1013 (2013). https://doi.org/10.1016/j.ijleo.2013.01.021

    Article  Google Scholar 

  5. T. Yabu, M. Geshiro, T. Kitamura et al., All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J. Quantum Electron. 38(1), 37–46 (2002). https://doi.org/10.1109/3.973317

    Article  ADS  Google Scholar 

  6. T. Fujisawa, M. Koshiba, All-optical logic gates based on nonlinear slot-waveguide couplers. J. Opt. Soc. Am. B 23(4), 684–691 (2006). https://doi.org/10.1364/JOSAB.23.000684

    Article  ADS  Google Scholar 

  7. S.K. Garai, A. Pal, S. Mukhopadhyay, All-optical frequency-encoded inversion operation with tristate logic using reflecting semiconductor optical amplifiers. Optik (2010). https://doi.org/10.1016/j.ijleo.2009.02.011

    Article  Google Scholar 

  8. J.N. Roy, A.K. Maiti, S. Mukhopadhyay, Designing of an all-optical time division multiplexing scheme with the help of nonlinear material based tree-net architecture. Chin. Opt. Lett. 4(8), 483–486 (2006)

    ADS  Google Scholar 

  9. A. Sinha, H. Bhowmik, P. Kuila, S. Mukhopadhyay, New method of controlling the power of a Gaussian optical pulse through an electro-optic modulator and a nonlinear waveguide for generation of solitons. Opt. Eng. 44(6), 065003 (2005). https://doi.org/10.1117/1.1921207

    Article  ADS  Google Scholar 

  10. K. Mallick, R. Mukherjee, B. Das, G.C. Mandal, A.S. Patra, Bidirectional hybrid OFDM based wireless-over-fiber transport system using reflective semiconductor amplifier and polarization multiplexing technique. AEU-Int. J. Electron. C. 96, 260–266 (2018). https://doi.org/10.1016/j.aeue.2018.09.041

    Article  Google Scholar 

  11. R. Mukherjee, B. Das, G.C. Mandal, A.S. Patra, A full-duplex WDM hybrid fiber-wired/fiber-wireless/fiberVLC/fiber-IVLC transmission system based on a self-injection locked quantum dash laser and a RSOA. Opt. Commun. 427, 202–208 (2018). https://doi.org/10.1016/j.optcom.2018.06.048

    Article  ADS  Google Scholar 

  12. R. Mukherjee, B. Das, G.C. Mandal, A.S. Patra, Bidirectional and simultaneous transmission of baseband and wireless signals over RSOA based WDM radio-over-fiber passive optical network using incoherent light injection technique. AEU-Int. J. Electron. C. 80, 193–198 (2017). https://doi.org/10.1016/j.aeue.2017.07.030

    Article  Google Scholar 

  13. A.S. Das, A.S. Patra, Bidirectional transmission of 10 Gbps using RSOA based WDM-PON and optical carrier suppression scheme. J. Opt. Commun. 35(3), 239–243 (2014). https://doi.org/10.1515/joc-2013-0166

    Article  Google Scholar 

  14. A.S. Das, P.K. Kuiri, A.S. Patra, A RSOA based full-duplex 80 channel CATV signal with 1.25 Gbps data-stream transmission system using optical carrier suppression and injection-locked FPLDs. SPIE Proc. 9654, 96541T-T96551 (2015). https://doi.org/10.1117/12.2182645

    Article  ADS  Google Scholar 

  15. A.S. Das, A.S. Patra, RSOA-based full-duplex WDM-PON for 20 Gbps transmission in two channels over a long-haul smf using external modulation scheme. J. Opt. Commun. 36(3), 231–235 (2015). https://doi.org/10.1515/joc-2014-0059

    Article  Google Scholar 

  16. M.J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic Publishers, Dordrecht, 2002)

    Google Scholar 

  17. N.K. Dutta, Q. Wang, Semiconductor Optical Amplifier (World Scientific Publishing, Singapore, 2006)

    Book  Google Scholar 

  18. K. Obermann, S. Kindt, D. Breuer et al., Performance analysis of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers. J. Lightwave Technol. 16(1), 78–85 (2002). https://doi.org/10.1109/50.654987

    Article  ADS  Google Scholar 

  19. S.K. Chandra, S. Mukhopadhyay, An all-optical approach of implementing a different kind of phase encoded XOR and XNOR logic operations with the help of four wave mixing in SOA. Optik Int. J. Light Electron Opt. 124(6), 505–507 (2013). https://doi.org/10.1016/j.ijleo.2011.12.048

    Article  Google Scholar 

  20. D.-X. Wang, J.A. Buck, K. Brennan et al., Numerical model of wavelength conversion through cross-gain modulation in semiconductor optical amplifiers. Appl. Opt. 45(19), 4701–4708 (2006). https://doi.org/10.1364/AO.45.004701

    Article  ADS  Google Scholar 

  21. S.K. Chandra, S. Biswas, S. Mukhopadhyay, Phase-encoded all-optical reconfigurable integrated multi logic unit using phase information processing of four-wave mixing in semiconductor optical amplifier. IET Optoelectron. 10(1), 1–6 (2016). https://doi.org/10.1049/iet-opt.2014.0066

    Article  Google Scholar 

  22. S. Singh, R.S. Kaler, ‘All optical wavelength converters based on cross phase modulation in SOA-MZI configuration. Optik Int. J. Light Electron Opt. 118(8), 390–394 (2007). https://doi.org/10.1016/j.ijleo.2006.04.010

    Article  Google Scholar 

  23. A.K. Maiti, J.N. Roy, S. Mukhopadhyay, All-optical conversion scheme from binary to its MTN form with the help of nonlinear material based tree net architecture. Chin. Opt. Lett. 5(8), 480–483 (2007)

    ADS  Google Scholar 

  24. S. Dutta, S. Mukhopadhyay, All optical frequency encoding method for converting a decimal number to its equivalent binary number using tree architecture. Optik Int. J. Light Electron Opt. 122(2), 125–127 (2011). https://doi.org/10.1016/j.ijleo.2009.11.018

    Article  Google Scholar 

  25. S. Dutta, S. Mukhopadhyay, All-optical approach for conversion of a binary number having a fractional part to its decimal equivalent and vice-versa. Opt. Photonics Lett. 03(01), 51–59 (2010). https://doi.org/10.1142/S1793528810000104

    Article  Google Scholar 

  26. S. Mukhopadhyay, An optical conversion systems from binary to decimal and decimal to binary. Opt. Commun. 76(5–6), 309–312 (1990). https://doi.org/10.1016/0030-4018(90)90257-T

    Article  ADS  Google Scholar 

  27. S. Saha, S. Biswas, S. Mukhopadhyay, Optical scheme of conversion of a positionally encoded decimal digit to frequency encoded Boolean form using Mach–Zehnder interferometer-based semiconductor optical amplifier. IET Optoelectron. 11(5), 201–207 (2017). https://doi.org/10.1049/iet-opt.2016.0078

    Article  Google Scholar 

  28. B. Ghosh, R.R. Pal, S. Mukhopadhyay, A new approach to all-optical half-adder by utilizing semiconductor optical amplifier based MZI wavelength converter. Optik Int. J. Light Electron Opt. 122(20), 1804 (2011)

    Article  Google Scholar 

  29. Wu. Jian-Wei, A.K. Sarma, Ultrafast all-optical XOR logic gate based on a symmetrical Mach–Zehnder interferometer employing SOI waveguides. Opt. Commun. 283(14), 2914–2917 (2010). https://doi.org/10.1016/j.optcom.2010.02.045

    Article  ADS  Google Scholar 

  30. C. Reis, R. Dionísio, B. Neto, A. Teixeira, P.S. André, All optical xor based on integrated mzi-soa with co and counter propagation scheme, in International Conference on Transparent Optical Networks, Mediterranean Winter Conference, 3, Angers, Dezembro 2009. Angèrs: IEEE, 2009. p. 1–4, URL: http://hdl.handle.net/10400.11/470

  31. S. Saha, S. Dey, S. Mukhopadhyay, All optical wavelength encoded 1-bit memory unit exploiting the nonlinear character of asymmetric mzi-soa switch. Accepted for poster presentation in The International Conference on Fiber Optics and Photonics (Photonics 2016), December, https://doi.org/10.1364/PHOTONICS.2016.Th3A.32

  32. M. Spyropoulou, N. Pleros, A. Miliou, SOA-MZI-based nonlinear optical signal processing: a frequency domain transfer function for wavelength conversion, clock recovery, and packet envelope detection. IEEE J. Quantum Electron. (2011). https://doi.org/10.1109/JQE.2010.2071411

    Article  Google Scholar 

  33. W. Wu, S. Campbell, S. Zhou et al., Polarization-encoded optical logic operations in photorefractive media. Opt. Lett. 18(20), 1742–1744 (1993). https://doi.org/10.1364/OL.18.001742

    Article  ADS  Google Scholar 

  34. K.W. Wong, L.M. Cheng, M.C. Poon, Design of digital–optical processors by using both intensity and polarization–encoding schemes. Appl. Opt. 31(17), 3225–3232 (1992). https://doi.org/10.1364/AO.31.003225

    Article  ADS  Google Scholar 

  35. B. Chakarborty, S. Mukhophahyay, All-optical method of developing half and full subtractor by the use of phase encoding principle. Optik Int. J. Light Electron. Opt. 122(24), 2207–2210 (2011). https://doi.org/10.1016/j.ijleo.2011.01.014

    Article  Google Scholar 

  36. Y. Guan, Demonstration of an optical switch based on SOA-MZI operation at 10 Gbit/s, in International Conference on Artificial Intelligence and Software Engineering (ICAISE 2013), The authors-Published by Atlantis Press

  37. V. Krishnamurthy, Y. Chen, Q. Wang, MZI-semiconductor-based all-optical switch with switching gain. J. Lightwave Technol. 32(13), 2433 (2014)

    Article  Google Scholar 

  38. M. Ding, A. Wonfor, Q. Cheng, R.V. Penty, I.H. White, Hybrid MZI-SOA InGaAs/InP photonic integrated switches. IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2017). https://doi.org/10.17863/CAM.13398

    Article  ADS  Google Scholar 

  39. A. Abd El Aziz, W.P. Ng, Z. Ghassemlooy, M.H. Aly, M.F. Chiang, Optimisation of the key SOA parameters for amplification and switching. Academia, RN 2, 3, 2008

  40. C. Michie, A.E. Kelly, I. Armstrong, I. Andonovic, C. Tombling, An Adjustable gain-clamped semiconductor optical amplifier (AGC-SOA). J. Lightwave Technol. 25(6), 1466 (2007)

    Article  ADS  Google Scholar 

  41. N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, H. Avramopoulos, Multiwavelength and power equalized SOA laser sources. IEEE Photonics Technol. Lett. 14(5), 693 (2002)

    Article  ADS  Google Scholar 

  42. R.A. Johni, D.I. Forsyth, K.R. Tariq, Effects on semiconductor optical amplifier gain quality for applications in advanced all-optical communication systems. Res. J. Appl. Sci. Eng. Technol. 7(16), 3414–3418 (2014)

    Article  Google Scholar 

  43. J. Kurumida, H. Uenohara, K. Kobayashi, All-optical label recognition for time-domain signal using multistage switching scheme based on SOA-MZIs. Electron. Lett. 42(2), 1362 (2006)

    Article  ADS  Google Scholar 

  44. T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, H. Suzuki, High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings. IEEE J. Quantum Electron. 44(10), 922–930 (2008). https://doi.org/10.1109/JQE.2008.2000920

    Article  ADS  Google Scholar 

  45. O. Aharon, I. Abdulhalim, Tunable optical filter having a large dynamic range. Opt. Lett. 34(14), 2114 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Subhendu Biswas, Assistant Professor, UIT-Burdwan, for his contribution to the simulation part of the present scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhendu Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Biswas, S. & Mukhopadhyay, S. An alternative approach for binary to decimal conversion of frequency encoded optical data using MZI-SOA Switch. J Opt 51, 357–370 (2022). https://doi.org/10.1007/s12596-021-00786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00786-9

Keywords

Navigation