Skip to main content

Advertisement

Log in

Biological Traits and Trait Combinations of Benthic Macroinvertebrates in a Wetland Under Hydrological Disturbance

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Drought is a hydrological disturbance, predicted to aggravate in a climate change scenario. It causes habitat loss and fragmentation for aquatic organisms, including benthic fauna. The hydrological disturbance is an environmental filter, retaining only taxa possessing suitable traits for survival. Here a trait-based perspective was used to study the benthic macroinvertebrate assemblage in a seasonal wetland subjected to hydrological disturbance. Maranchery Kole wetland (a part of the Ramsar site Vembanad Kole wetland), was unusually transformed into a terrestrial landscape with discrete aquatic patches. Benthic macroinvertebrates were collected from aquatic patches. 55 categories of 10 biological traits, which could be assigned across the benthic genus were defined from literature. To delineate the faunal groups with similar trait assembly, the taxa by trait data matrix was subjected to Gower's distance‐based hierarchical agglomerative cluster analysis. Benthic macroinvertebrates belonged to 23 genera from 8 families, 4 orders, 2 classes, and 2 phyla. Their predominant traits were small body size, short life cycle duration, multivoltine life cycle, aquatic larval stage, aerial active dispersal, cocoons as resistant form, locomotion by crawling, tegumental respiration, asexual reproduction, and deposit-feeding. Traits-based classification of taxa resulted in 4 clusters. In each cluster, unique trait combinations ensured the survival of taxa. Group a persisted through desiccation resistant forms and proliferated through asexual reproduction using resource dominance strategy. Groups b and c, without desiccation resistant forms, used active aerial dispersal to colonize the aquatic patches. Group d was tolerant to unfavorable environments including morphological adaptations. Since the active dispersal trait facilitated active habitat selection in groups b and c, their presence was occasional. Groups a and d were incapable of active habitat selection due to passive dispersal traits, ensuing in their persistence throughout the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alekseev, V., and Y. Starobogatov. 1996. Types of diapause in Crustacea: Definitions, distribution, evolution. Hydrobiologia 320: 15–26.

    Article  Google Scholar 

  • Andersen, M.R., T.S. Kragh, and K. Jensen. 2017. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes. Proceedings of the Royal Society B 284: 20171427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Argüelles, M.C., and M. Rieradevall. 2011. Early succession of the macroinvertebrate community in a shallow lake: Response to changes in the habitat condition. Limnologica 41 (4): 363–370.

    Article  Google Scholar 

  • Arscott, D.B., S.T. Larned, M.R. Scarsbrook, and P. Lambert. 2010. Aquatic invertebrate community structure along an intermittence gradient: Selwyn River, New Zealand. Journal of the North American Benthological Society 29: 530–545.

    Article  Google Scholar 

  • Aspin, T.W.H., K. Khamis, T.J. Matthews, A.M. Milner, M.J. O’Callaghan, M. Trimmer, G. Woodward, and M.E. Ledger. 2018. Extreme drought pushes stream invertebrate communities over functional thresholds. Global Change Biology 00: 1–15.

    Google Scholar 

  • Bêche, L.A., E.P. Mcelravy, and V.H. Resh. 2006. Long-term seasonal variation in the biological traits of benthic macroinvertebrates in two Mediterranean-climate streams in California, U.S.A. Freshwater Biology 51: 56–75.

    Article  Google Scholar 

  • Bilton, D.T., J.R. Freeland, and B. Okamura. 2001. Dispersal in Freshwater Invertebrates. Annual Review of Ecology and Systematics 32: 159–181.

    Article  Google Scholar 

  • Boersma, K.S. 2013. Aquatic Community Responses to Drought Disturbance: Experimental Manipulations of Top Predator Extinctions and Stream Drying. PhD Thesis, Oregon State University, Corvallis.

  • Bogan, M.T., and D.A. Lyte. 2007. Seasonal flow variation allows ‘time-sharing’ by disparate aquatic insect communities in montane desert streams. Freshwater Biology 52 (2): 290–304.

    Article  Google Scholar 

  • Bogan, M.T., Chester, E.T., Datry, T., Murphy, A.L., Robson, B.J., Ruhi, A., Stubbington, R., and Whitney, J.E. 2017. Resistance, resilience, and community recovery in intermittent rivers and ephemeral streams. Intermittent rivers and ephemeral streams: ecology and management, Elsevier 349–376.

  • Bohonak, A.J., and D.G. Jenkins. 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.

    Article  Google Scholar 

  • Bonada, N., S. Dolédec, and B. Statzner. 2007a. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: Implications for future climatic scenarios. Global Change Biology 13: 1658–1671.

    Article  Google Scholar 

  • Bonada, N., M. Rieradevall, and N. Prat. 2007b. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.

    Article  Google Scholar 

  • Bremner, J., S.I. Rogers, and C.L.J. Frid. 2006. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecological Indicators 6: 609–622.

    Article  Google Scholar 

  • Brendonck, L., B.J. Riddoch, V. VandeWeghe, and T. VanDooren. 1998. The maintenance of egg banks in very short-lived pools—a case study with anostracans (Branchiopoda). Archiv fu¨r Hydrobiologie 52: 141–161.

    Google Scholar 

  • Brinkhurst, R.O., and B.G.M. Jamieson. 1971. Aquatic Oligochaeta of the world. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Caruso, B.S. 2002. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago. New Zealand Journal of Hydrology 257 (115): 133.

    Google Scholar 

  • Cazaubon, A., and J. Giudicelli. 1999. Impact of the residual flow on the physical characteristics and benthic community (algae, invertebrates) of a regulated Mediterranean river: The Durance, France. Regulated Rivers: Research and Management 15: 441–461.

    Article  Google Scholar 

  • Chase, J.M. 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences 104 (44): 17430–17434.

    Article  CAS  Google Scholar 

  • Chessman, B.C. 2015. Relationships between lotic macroinvertebrate traits and responses to extreme drought. Freshwater Biology 60: 50–63.

    Article  Google Scholar 

  • Chester, E.T., and B.J. Robson. 2011. Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.

    Article  Google Scholar 

  • Chevenet, F., S. Doledec, and D. Chessel. 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Cid, N., I. Verkaik, E.M. García-Roger, M. Rieradevall, N. Bonada, M.M. Sánchez-Montoya, and N. Prat. 2016. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin. Science of the Total Environment 540: 178–190.

    Article  CAS  Google Scholar 

  • Clarke, K.R., and Gorley, R.N. 2006. PRIMER v6: User Manual/ Tutorial, PRIMER-E, Plymouth, UK.

  • Clarke, K.R., P.J. Somerfield, and R.N. Gorley. 2008. Testing of null hypotheses in exploratory community analyses: Similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366 (1–2): 56–69.

    Article  Google Scholar 

  • Datry, T., H. Pella, C. Leigh, N. Bonada, and B. Hugueny. 2016. A landscape approach to advance intermittent river ecology. Freshwater Biology 61: 1200–1213.

    Article  Google Scholar 

  • Dewson, Z.S., A.B.W. James, and R.G. Death. 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.

    Article  Google Scholar 

  • Diaz, A.M., M.L.S. Alonso, and M.R.V. Gutiérrez. 2008. Biological traits of stream macroinvertebrates from a semi-arid catchment: Patterns along complex environmental gradients. Freshwater Biology 53: 1–21.

    Google Scholar 

  • Dole´dec, S., and Statzner, B. . 2008. Invertebrate traits for the biomonitoring of large European rivers: An assessment of specific types of human impact. Freshwater Biology 53: 617–634.

    Article  Google Scholar 

  • Doledec, S., and B. Statzner. 2010. Responses of freshwater biota to human disturbances: Contribution of J-NABS to developments in ecological integrity assessments. Journal of the North American Benthological Society 29: 286–311.

    Article  Google Scholar 

  • Dole-Olivier, M.J., P. Marmonier, and J.L. Beffy. 1997. Response of invertebrates to lotic disturbance: Is the hyporheic zone a patchy refugium? Freshwater Biology 37: 257–276.

    Article  Google Scholar 

  • Dudgeon, D., and K.K.Y. Wu. 1999. Leaf litter in a tropical stream: Food or substrate for macroinvertebrates? Archives Hydrobiolgia 146: 65–82.

    Article  Google Scholar 

  • Ebel, B.A., and B.B. Mirus. 2014. Disturbance ecology: Challenges and opportunities. Hydrological Processes 28: 5140–5148.

    Article  Google Scholar 

  • Eckman, J. 1996. Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates. Journal of Experimental Marine Biology and Ecology 200: 207–237.

    Article  Google Scholar 

  • Eggleston, D.B., W.E. Elis, L.L. Etherington, C.P. Dahlgren, and M.H. Posey. 1999. Organism responses to habitat fragmentation and diversity: Habitat colonization by estuarine macrofauna. Journal of Experimental Marine Biology and Ecology 236: 107–132.

    Article  Google Scholar 

  • Fenoglio, S., T. Bo, M. Pessino, and G. Malacarne. 2007. Feeding of Perla grandis nymphs (Plecoptera: Perlidae) in an Apennine first order stream (Rio Berga, NW Italy). Annales De La Société Entomologique De France 43: 221–224.

    Article  Google Scholar 

  • Finn, D.S., and N.L. Poff. 2005. Variability and convergence in benthic communities along the longitudinal gradients of four physically similar Rocky Mountain streams. Freshwater Biology 50: 243–261.

    Article  Google Scholar 

  • Floury, M., P. Usseglio-Polatera, C. Delattre, and Y. Souchon. 2017. Assessing long-term effects of multiple, potentially confounded drivers in ecosystems from species traits. Global Change Biology 23: 2297–2307.

    Article  PubMed  Google Scholar 

  • Folk, R.L. 1968. Petrology of sedimentary rocks. Geology Austin Texas: The University for Texas.

    Google Scholar 

  • García-Roger, E.M., M.M. Sánchez-Montoya, N. Cid, S. Erba, I. Karaouzas, I. Verkaik, and N. Prat. 2013. Spatial scale effects on taxonomic and biological trait diversity of aquatic macroinvertebrates in Mediterranean streams. Fundamental and Applied Limnology 183: 89–105.

    Article  CAS  Google Scholar 

  • Gayraud, S., B. Statzner, P. Bady, A. Haybachp, F. Sco¨hll, P. Usseglio-Polatera, and M. Bacchi. 2003. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshwater Biology 48: 2045–2064.

    Article  Google Scholar 

  • Gopal, B., and D.P. Zutshi. 1998. Fifty years of hydrobiological research in India. Hydrobiologia 384: 267–290.

    Article  Google Scholar 

  • Gould, S.J., and R.C. Lewontin. 1979. The Spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Biological Sciences 205: 581–598.

    CAS  PubMed  Google Scholar 

  • Griswold, M.W., R.W. Berzinis, T.L. Crisman, and S.W. Golladay. 2008. Impacts of climatic stability on the structural and functional aspects of macroinvertebrate communities after severe drought. Freshwater Biology 53: 2465–2483.

    Article  Google Scholar 

  • Hayworth, J. 2000. The response of wetland benthic macro invertebrates to short term draw down. A non thesis project report presented to the University of Florida in partial fulfillment of the requirement for the degree of Master of Science.

  • Heino, J. 2013. Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171: 971–980.

    Article  PubMed  Google Scholar 

  • Herbst, D.B., S.D. Cooper, R.B. Medhurst, S.W. Wiseman, and C.T. Hunsaker. 2019. Drought ecohydrology alters the structure and function of benthic invertebrate communities in mountain streams. Freshwater Biology 00: 1–17.

    Google Scholar 

  • Humphries, P., and D.S. Baldwin. 2003. Drought and aquatic ecosystems: An introduction. Freshwater Biology 48: 1141–1146.

    Article  Google Scholar 

  • Ilg, C., and E. Castella. 2006. Patterns of macroinvertebrate traits along three glacial stream continuums. Freshwater Biology 51: 840–853.

    Article  Google Scholar 

  • Jackson, M.L. 1973. Soil chemical analysis. New Delhi: Printers- Hall India Ltd.

    Google Scholar 

  • Jaeger, K.L., J.D. Olden, and N.A. Pelland. 2014. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Science USA 111: 13894–13899.

    Article  CAS  Google Scholar 

  • James, A.B.W., and A.M. Suren. 2009. The response of invertebrates to a gradient of flow reduction—an instream channel study in a New Zealand lowland river. Freshwater Biology 54: 2225–2242.

    Article  Google Scholar 

  • Jocque’, M.B., J. Riddoch, and L. Brendonck. 2007. Successional phases and species replacements in fresh- water rock pools: towards a biological definition of ephemeral systems. Freshwater Biology 52: 1734–1744.

    Article  Google Scholar 

  • Johnkutty, I., and V.K. Venugopal. 1993. Kole wetlands of Kerala, 68. Thrissur: Kerala Agricultural University.

    Google Scholar 

  • Kearney, M., and W. Porter. 2009. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.

    Article  PubMed  Google Scholar 

  • Keddy, P.A. 1992a. Assembly and response rules: Two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Article  Google Scholar 

  • Keddy, P.A. 1992b. A pragmatic approach to functional ecology. Functional Ecology 6 (6): 621–626.

    Article  Google Scholar 

  • Kurup, P.G., and V.V.R.G. Varadachar. 1975. Hydrography of Purakkad mud bank region. Indian Journal of Marine Sciences 4: 18–20.

    Google Scholar 

  • Lahr, J., A.O. Diallo, K.B. Ndour, A. Badji, and P.S. Diouf. 1999. Phenology of invertebrates living in a Sahelian temporary pond. Hydrobiologia 405: 189–205.

    Article  CAS  Google Scholar 

  • Lake, P.S. 2011. Drought and Aquatic Ecosystems: Effects and Responses. Wiley-Blackwell: A John Wiley and Sons Ltd, Publication.

    Book  Google Scholar 

  • Lancaster, J., and L.R. Belyea. 1997. Nested hierarchies and scale-dependence of mechanisms of flow refugium use. Journal of the North American Benthological Society 16 (1): 221–238.

    Article  Google Scholar 

  • Ledger, M.E., F.K. Edwards, L.E. Brown, A.M. Milner, and G. Woodward. 2011. Impact of simulated drought on ecosystem biomass production: An experimental test in stream mesocosms. Global Change Biology 17: 2288–2297.

    Article  Google Scholar 

  • Ledger, M.E., L.E. Brown, F.K. Edwards, A.M. Milner, and G. Woodward. 2013. Drought alters the structure and functioning of complex food webs. Nature Climate Change 3: 223–227.

    Article  Google Scholar 

  • Leigh, C., and T. Datry. 2017. Drying as a primary hydrological determinant of biodiversity in river systems: A broad-scale analysis. Ecography 40: 487–499.

    Article  Google Scholar 

  • Leigh, C., N. Bonada, A.J. Boulton, B. Hugueny, S.T. Larned, R. Vander Vorste, and T. Datry. 2016. Invertebrate assemblage responses and the dual roles of resistance and resilience to drying in intermittent rivers. Aquatic Sciences 78: 291–301.

    Article  Google Scholar 

  • Lenat, D.R., and V.H. Resh. 2001. Taxonomy and stream ecology: The benefits of genus- and species-level identifications. Journal of the North American Benthological Society 20 (2): 287–298.

    Article  Google Scholar 

  • Lytle, D.A., and N.L. Poff. 2004. Adaptation to natural flow regimes. Trends in Ecology and Evolution 19: 94–100.

    Article  PubMed  Google Scholar 

  • Matthews, W.J., E.M. Matthews, R.C. Cashner, and R. Gelwick. 2013. Disturbance and trajectory of change in a stream fish community over four decades. Oecologia 173: 955–969.

    Article  PubMed  Google Scholar 

  • Mccann, K.S., J.B. Rasmussen, and J. Umbanhowar. 2005. The dynamics of spatially coupled food webs. Ecology Letters 8: 513–523.

    Article  CAS  PubMed  Google Scholar 

  • McGill, B.J., B.J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178–185.

    Article  PubMed  Google Scholar 

  • McIntyre, A.D., and A. Eleftheriou. 2005. Methods for the study of marine benthos, 3rd ed. New Jersey: Blackwell Scientific Publications.

    Google Scholar 

  • McMaster, D., and N.R. Bond. 2008. A field and experimental study on the tolerances of fish to Eucalyptus camaldulensis leachate and low dissolved oxygen concentrations. Marine and Freshwater Research 59: 177–185.

    Article  CAS  Google Scholar 

  • Me’rigoux, S., S. Dole’dec, and B. Statzner. 2001. Species traits in relation to habitat variability and state: Neotropical juvenile fish in floodplain creeks. Freshwater Biology 46: 1251–1267.

    Article  Google Scholar 

  • Menezes, S., D.J. Baird, and A.M.V.M. Soares. 2010. Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology 47: 711–719.

    Article  Google Scholar 

  • Mergeay, J., J. Vanoverbeke, D. Verschuren, and L.D. Meester. 2007. Extinction, recolonization, and dispersal through time in a planktonic crustacean. Ecology 88: 3032–3043.

    Article  PubMed  Google Scholar 

  • Morse, C.J., Y. Lianfang, and T. Lixin. 1994. Aquatic insects of China useful for monitoring water quality. Nanjiing: Hohai University Press.

    Google Scholar 

  • Naidu, K.V. 2005. The Fauna of India and the adjacent countries-aquatic oligochaeta. Kolkata: Zoological Survey of India.

    Google Scholar 

  • Pavoine, S., J. Vallet, A.B. Dufour, S. Gachet, and D. Hervé. 2009. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118: 391–402.

    Article  Google Scholar 

  • Poff, N.L. 1997. Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Rader, R.B., and T.A. Belish. 1999. Influence of mild to severe flow alterations on invertebrates in three mountain streams. Regulated Rivers: Research and Management 15: 353–363.

    Article  Google Scholar 

  • Resetarits, W.J., and A.A. Binckley. 2009. Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90: 869–876.

    Article  PubMed  Google Scholar 

  • Resh, V.H., A.G. Hildrew, B. Statzner, and C.R. Townsend. 1994. Theoretical habitat templets, species traits, and species richness – a synthesis of long-term ecological research on the upper Rhoˆne river in the context of currently developed ecological theory. Freshwater Biology 31: 539–554.

    Article  Google Scholar 

  • Robson, B.J., and T.G. Matthews. 2004. Drought refuges affect algal recolonization in intermittent streams. River Research and Applications 20: 753–763.

    Article  Google Scholar 

  • Robson, B.J., E.T. Chester, and C.M. Austin. 2011. Why life history information matters: Drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Marine and Freshwater Research 62: 801–810.

    Article  CAS  Google Scholar 

  • Rolls, R.J., C. Leigh, and F. Sheldon. 2012. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshwater Science. 31 (4): 1163–1186.

    Article  Google Scholar 

  • Saran Aadhar, S., and Mishra, M. 2018 Impact of climate change on drought frequency over India. In Climate Change and Water Resources in India. Publisher: Ministry of Environment, Forest and Climate Change (MoEF&CC), Government of India.117–129.

  • Schriever, T.A., and Lytle, D.A. 2016. Convergent diversity and trait composition in temporary streams and ponds. Ecosphere 7.

  • Schriever, T.A., M.T. Bogan, K.S. Boersma, M. Cañedo-Argüelles, K.L. Jaeger, J.D. Olden, and D.A. Lytle. 2015. Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science 34: 399–409.

    Article  Google Scholar 

  • Schwartz, S.S., and D.G. Jenkins. 2000. Temporary aquatic habitats: Constraints and opportunities. Aquatic Ecology. Kluwer Academic Publishers. 34: 3–8.

    Article  Google Scholar 

  • Shojaei, M.G., L. Gutow, J. Dannheim, H. Pehlke, and T. Brey. 2015. Functional diversity and traits assembly patterns of benthic macrofaunal communities in the Southern North Sea. In Towards an interdisciplinary approach in earth system science, ed. G. Lohmann, et al. Cham: Springer Earth System Sciences.

    Google Scholar 

  • Southwood, T.R.E. 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–365.

    Article  Google Scholar 

  • Southwood, T.R.E. 1988. Tactics, strategies and templets. Oikos 52: 3–18.

    Article  Google Scholar 

  • Stanley, E.H., D.L. Buschman, A.J. Boulton, N.B. Grimm, and S.G. Fisher. 1994. Invertebrate resistance and resilience to intermittency in a desert stream. American Midland Naturalist 131: 288–300.

    Article  Google Scholar 

  • Stanley, E.H., S.G. Fisher, and N.B. Grimm. 1997. Ecosystem expansion and contraction in streams. BioScience 47: 427–435.

    Article  Google Scholar 

  • Stearns, S.C. 1976. Life-history tactics: A review of the ideas. Quarterly Review of Biology 51: 3–47.

    Article  CAS  Google Scholar 

  • Strachan, S.R., E.T. Chester, and B.J. Robson. 2015. Freshwater invertebrate life history strategies for surviving desiccation. Springer Science Reviews 3: 57–75.

    Article  Google Scholar 

  • Stubbington, R., and T. Datry. 2013. The macroinvertebrate seed bank promotes community persistence in temporary rivers across climate zones. Freshwater Biology 58: 1202–1220.

    Article  Google Scholar 

  • Stubbington, R., J. England, P.J. Wood, and E.M. Catherine. 2017. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic terrestrial ecosystems. WIREs Water 4: e1223.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud, and P. Usseglio-Polatera. 2000. Invertébrés d’eau Douce: Systématique, Biologie, Écologie, 3rd ed. Paris: CNRS éditions.

    Google Scholar 

  • Tauber, M.J., C.A. Tauber, and S. Masaki. 1986. Seasonal adaptations of insects, 411. New York: Oxford University Press.

    Google Scholar 

  • Townsend, C.R., S. Dole’dec, and M. Scarsbrook. 1997. Species traits in relation to temporal and spatial heterogeneity in streams: a test of the habitat templet theory. Freshwater Biology 37: 367–387.

    Article  Google Scholar 

  • Townsend, C.R., and A.G. Hildrew. 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31: 265–275.

    Article  Google Scholar 

  • Townsend, C.R., M.R. Scarsbrook, and S. Doledec. 1997. Quantifying disturbance in streams: Alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. Journal of North American Benthological Society 16: 531–544.

    Article  Google Scholar 

  • Trask, P.D. 1953. Chemical studies of the sediment of the western Gulf of Mexico. Pap. Phys. Oceanogr. Meteoro Massachusetts Inst. Technology 12: 49–120.

    Google Scholar 

  • Usseglio-Polatera, P. 1991. Representation graphique synthetique de la signification ecologique d’un peuplement. Application aux macroinvertebres du hone a Lyon. Bulletin D’ Ecologie 22: 195–202.

    Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux, and H. Tachet. 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: Relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205.

    Article  Google Scholar 

  • Vadher, A.N., C. Leigh, J. Millett, R. Stubbington, and P.J. Wood. 2017. Vertical movements through subsurface stream sediments by benthic macroinvertebrates during experimental drying are influenced by sediment characteristics and species traits. Freshwater Biology 62: 1730–1740.

    Article  Google Scholar 

  • Van Kleef, H.H., W.C.E.P. Verberk, R.S.E.W. Leuven, H. Esselink, G. van derVelde, and G.A. van Duinen. 2006. Biological traits successfully predict the effects of restoration management on macroinvertebrates in shallow soft water lakes. Hydrobiologia 565: 201–216.

    Google Scholar 

  • Vanschoenwinkel, B., A. Waterkeyn, M. Jocqué, L. Boven, M. Seaman, and L. Brendonck. 2010. Species sorting in space and time—the impact of disturbance regime on community assembly in a temporary pool metacommunity. Journal of the North American Benthological Society 29 (4): 1267–1278.

    Article  Google Scholar 

  • Verberk, W.C.E.P., H. Siepel, and H. Esselink. 2008a. Life history strategies in freshwater macroinvertebrates. Freshwater Biology 53: 1722–1738.

    Article  Google Scholar 

  • Verberk, W.C.E.P., H. Siepel, and H. Esselink. 2008b. Applying life-history strategies for freshwater macroinvertebrates to lentic waters. Freshwater Biology 53: 1739–1753.

    Article  Google Scholar 

  • Verberk, W.C.E.P., C.G.E. van Noordwijk, and A.G. Hildrew. 2013. Delivering on a promise: Integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32 (2): 531–547.

    Article  Google Scholar 

  • Vijayan, V.S, Prasad, S.N., Vijayan, L., and Muraleedharan, S.C. 2004. Inland wetlands of India- Conservation priorities. Salim Ali Institute for ornithology and natural history.

  • Violle, C., M.L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116: 882–892.

    Article  Google Scholar 

  • Vorste, R.V., F. Malard, and T. Datry. 2016. Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Special Issue: Intermittent river ecology as a maturing, multidisciplinary science: challenges, developments and perspectives. Freshwater Biology 61 (8): 1276–1292.

    Article  Google Scholar 

  • Walters, A.W. 2011. Resistance of aquatic insects to a low-flow disturbance: Exploring a trait-based approach. Journal of the North American Benthological Society 30 (2): 346–356.

    Article  Google Scholar 

  • Webb, C.T., J.A. Hoeting, G.M. Ames, M.I. Pyne, and N.L. Poff. 2010. A structured and dynamic framework to advance trait-based theory and prediction in ecology. Ecology Letters 13: 267–283.

    Article  PubMed  Google Scholar 

  • White, P.S., and S.T.A. Picket. 1985. Natural disturbance and patch dynamics:an introduction. In The ecology of natural disturbance and patch dynamics, ed. Picket STA. White and PS, . Orlando: Academic Press.

    Google Scholar 

  • White, R.S.A., P.A. Mchugh, and A.S.R. Mcintosh. 2016. Drought survival is a threshold function of habitat size and population density in a fish metapopulation. Global Change Biology 10: 3341–3348.

    Article  Google Scholar 

  • Williams, D.D. 2006. The biology of temporary waters. Oxford: Oxford University Press.

    Google Scholar 

  • Woodward, G., N. Bonada, L.E. Brown, R.G. Death, I. Durance, C. Gray, and S. Pawar. 2016. The effects of climatic fluctuations and extreme events on running water ecosystems. Philosophical Transactions of the Royal Society B 371: 20150274.

    Article  Google Scholar 

  • Yule, C.M., and Y.H. Sen. 2004. Freshwater invertebrates of the Malaysian region. Kuala Lumpur: Academy of Sciences Malaysia.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head of the Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology for providing necessary facilities. This study was a part of the research project funded by Kerala State Biodiversity Board, the authors are thankful to them. First author is thankful to University Grants Commission for post doctoral research fellowship. The authors are also thankful to two anonymous reviewers for their valuable suggestions and helpful comments on an earlier draft of this manuscript.

Funding

This study was a part of the research project funded by Kerala State Biodiversity Board, the authors are thankful to them. First author is thankful to University Grants Commission for post doctoral research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vineetha.

Ethics declarations

Conflict of interest

None of the authors has conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vineetha, S., Nandan, S.B. Biological Traits and Trait Combinations of Benthic Macroinvertebrates in a Wetland Under Hydrological Disturbance. Proc Zool Soc 74, 339–356 (2021). https://doi.org/10.1007/s12595-021-00379-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-021-00379-1

Keywords

Navigation