Skip to main content
Log in

Modelling relationship between bulk susceptibility and AMS in rocks consisting of two magnetic fractions represented by ferromagnetic and paramagnetic minerals — Implications for understanding magnetic fabrics in deformed rocks

  • Published:
Journal of the Geological Society of India

Abstract

Measurement of Anisotropy of Magnetic Susceptibility (AMS) has become an important tool for Structural Geological analysis in the past few decades. In the past, AMS data have been used for petrofabric analysis of deformed rocks as well as for gauging strain. However, the AMS of some rocks can be carried by both ferromagnetic and paramagnetic minerals. Separating effects of these mineral groups on the rock’s AMS is difficult because of expensive and commercially less available instrumentation. On the other hand, instrumentation is available in most rock magnetic and palaeomagnetic laboratories for resolving bulk susceptibility into ferromagnetic and paramagnetic components. Mathematical modelling was made of the relationship between bulk susceptibility and AMS. If the contribution of the ferromagnetic or the paramagnetic fraction to the rock susceptibility is dominant (let us say higher than 80%), the resultant AMS is relatively near to the AMS of the dominating fraction in all aspects, the degree of AMS, shape parameter and orientation of principal susceptibilities. In the interpretation of the AMS of rocks with dominating one fraction, the resolution of the AMS into paramagnetic and ferromagnetic components is not necessary, the resolution of bulk susceptibility into components is sufficient that can be made using the instrumentation available in most rock magnetic and palaeomagnetic laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archanjo, C.J., Launeau, P. and Bouchez, J.L. (1995) Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetitebearing granite pluton of Gamelerias (Northeast Brazil). Phys. Earth Planet. Inter., v.89, pp.63–75.

    Article  Google Scholar 

  • Aydin, A., Ferré, E.C. and Aslan, Z. (2007) The magnetic susceptibility of granitic rocks as a proxy for geochemical differentiation: Example from the Saruhan granitoids, NE Turkey. Tectonophysics, v.441, pp.85–95.

    Article  Google Scholar 

  • Bleil, U. and Petersen, N. (1982). Magnetic properties of rocks. In: G. Angenheister (editor), Landolt-Börnstein Numerical Data and Functional Relationships in Science and technology. Springer-Verlag Berlin, pp.366–432.

    Google Scholar 

  • Borradaile, G.J. and Alford, C. (1987) Relationship between magnetic susceptibility and strain in laboratory experiments. Tectonophysics, v.133, pp.121–135.

    Article  Google Scholar 

  • Borradaile, G., Keeler, W., Alford, C. and Sarvas, P. (1987) Anisotropy of magnetic susceptibility of some metamorphic minerals. Phys. Earth Planet. Inter., v.48, pp.161–166.

    Article  Google Scholar 

  • Borradaile, G.J. and Werner, T. (1994) Magnetic anisotropy of some phyllosilicates. Tectonophysics, v.235, pp.223–248.

    Article  Google Scholar 

  • Bouchez, J.-L. (2000) Anisotropie de susceptibilité magnétique et fabrique des granites. C.R. Acad. Sci. Paris, Sciences de la Terre et des planets, v.330, pp.1–14.

    Google Scholar 

  • Cifelli, F., Mattei, M., Chadima, M., Lenser, S. and Hirt, A.M. (2009). The magnetic fabric in “undeformed clays”: AMS and neutron texture analyses from the Rif Chain (Morocco). Tectonophysics, v.466, pp.79–88.

    Article  Google Scholar 

  • Collinson, D.W. (1983) Methods in rock magnetism and palaeomagnetism. Techniques and instrumentation. Chapman & Hall, London-New York.

    Google Scholar 

  • Dunlop, D.J. and Özdemir, Ö. (1997) Rock Magnetism. Fundamentals and frontiers. Cambridge University Press, 573p.

  • Friedrich, D. (1995) Gefügeuntersuchungen an Amfiboliten der Böhmische Masse unter besonderer Berücksichtigung der Anisotropie der magnetischen Suszeptibilität. Geotektonische Forschungen, v.82, pp.1–118.

    Google Scholar 

  • Greiling, R.O., Grimmer, J.C., Dewall, H. and Bjõrk, L. (2007) Mesoproterozoic dyke swarms in foreland and nappes of the central Scandinavian Caledonides: structure, magnetic fabric, and geochemistry. Geol. Mag., v.144, pp.525–546.

    Article  Google Scholar 

  • Hejtman, B. (1957) Systematic petrography of igneous rocks (in Czech). NÈSAV Praha, 363p.

  • Hejtman, B. (1962). Petrography of metamorphic rocks (in Czech). NČSAV Praha, 539p.

  • Henry, B. (1983) Interpretation quantitative de l’anisotropie de susceptibilité magnétique. Tectonophysics, v.91, pp.165–177.

    Article  Google Scholar 

  • Henry, B. and Daly, L. (1983) From qualitative to quantitative magnetic anisotropy analysis: the prospect of finite strain calibration. Tectonophysics, v.98, pp.327–336.

    Article  Google Scholar 

  • Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., v.5, pp.37–82.

    Article  Google Scholar 

  • Hrouda, F. (1986) The effect of quartz on the magnetic anisotropy of quartzite. Studia geophys. geod., v.30, pp.39–45.

    Article  Google Scholar 

  • Hrouda, F. (1993) Theoretical models of magnetic anisotropy to strain relationship revisited. Phys. Earth Planet. Inter., v.77, pp.237–249.

    Article  Google Scholar 

  • Hrouda, F. (1994) A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. Jour. Int., v.118, pp.604–612.

    Article  Google Scholar 

  • Hrouda, F. (2004) Problems in interpreting AMS parameters in diamagnetic rocks, 49–59. In: F. Martín-Hernández, C.M. Lüneburg, C. Aubourg and M. Jackson (Eds) Magnetic Fabric: Methods and Applications. Geol. Soc. London, Spec. Publ., 238p.

  • Hrouda, F. (2007). Magnetic susceptibility, anisotropy. In: D. Gubbins and E. Herrero-Bervera (Eds.), Encyclopedia of Geomagnetism and Paleomagnetism. Springer, pp.546–560.

  • Hrouda, F. and Kahan, Š. (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mts. (N Slovakia). Jour. Struct. Geol., v.13, pp.431–442.

    Article  Google Scholar 

  • Hrouda, F., Jelínek, V. and Zapletal, K. (1997). Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophys. Jour. Int., v.129, pp.715–719.

    Article  Google Scholar 

  • Hrouda, F., Táborská, Š., Schulmann, K., Ježek, J. and Dolejš, D. (1999). Magnetic fabric and rheology of co-mingled magmas in the Nasavrky Plutonic Complex (E Bohemia): implications for intrusive strain regime and emplacement mechanism. Tectonophysics, v.307, pp.93–111.

    Article  Google Scholar 

  • Jelínek, V. (1981) Characterization of magnetic fabric of rocks. Tectonophysics, v.79, pp.T63–T67.

    Article  Google Scholar 

  • Ježek, J. and Hrouda, F. (2000) The Relationship Between the Lisle Orientation Tensor and the Susceptibility tensor. Phys. Chem. Earth (A), v.25, pp.469–474.

    Article  Google Scholar 

  • Ježek, J. and Hrouda, F. (2007) SUSIE: A program for inverse strain estimation from magnetic susceptibility. Computers & Geosciences, v.33, pp.749–759.

    Article  Google Scholar 

  • Launeau, P. and Cruden, A.R. (1998) Magmatic fabric acquisition mechanisms in a syenite: results of a combined anisotropy of magnetic susceptibility and image analysis study. Jour. Geoph. Res., v.103, pp.5067–5089.

    Article  Google Scholar 

  • Martin-Hernández, F. and Ferré, E.C. (2007) Separation of paramagnetic and ferromagnetic anisotropies: A review. Jour. Geophys. Res., v.112, B03105, doi: 10.1029/2006JB004340.

    Article  Google Scholar 

  • Martín-Hernández, F. and Hirt, A.M. (2003) The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics, v.367, pp.13–28.

    Article  Google Scholar 

  • Mukherji, A., Chaudhuri, A.K. and Mamtani, M.A. (2004) Regional scale strain variations in the Banded Iron Formations of eastern India: results from anisotropy of magnetic susceptibility studies. Jour. Struct. Geol., v. 26, pp. 2175–2189.

    Article  Google Scholar 

  • Nagata, T. (1961) Rock magnetism. Maruzen Tokyo.

  • Nye, J.F. (1957) Physical properties of crystals. Clarendon Press, Oxford.

    Google Scholar 

  • Petránek., J. (1963) Petrography of sedimentary rocks (in Czech). NČSAV Praha, 718p.

  • Rochette, P. (1988) Relations entre deformation et metamorphisme alpin dans les schistes noirs helvetiques: l’apport de la fabrique magnetique. Geodin. Acta, v.2, pp.17–24.

    Google Scholar 

  • Rochette, P., Jackson, J. and Aubourg, C. (1992) Rock magnetism and the interpretation of anisotrophy of magnetic susceptibility. Reviews of Geophysics, v.30, pp.209–226.

    Article  Google Scholar 

  • Rochette, P., Scaillet, B., Guillot, S., Le Fort, P. and Pecher, A. (1994). Magnetic properties of the High Himalayan leucogranites: structural implications. Earth Planet. Sci. Lett., v.126, pp.217–234.

    Article  Google Scholar 

  • Scheidegger, A.E. (1965) On the statistics of the orientation of bedding planes, grain axes and similar sedimentological data. U.S. Geol. Surv. Prof. Paper, 525-C, pp.164–167.

    Google Scholar 

  • Sen, K. and Mamtani, M.A. (2006) Magnetic fabric, shape preferred orientation and regional strain in granitic rocks. Jour. Struct. Geol., v.28, pp.1870–1882.

    Article  Google Scholar 

  • Sen, K., Majumder, S. and Mamtani, M.A. (2005) Degree of magnetic anisotropy as a strain intensity gauge in ferromagnetic granites. Jour. Geol. Soc. London, v.162, pp.583–586.

    Article  Google Scholar 

  • Syono, Y. (1960) Magnetic susceptibility of some rock forming silicate minerals such as amphiboles, biotites, cordierites and garnets. Jour. Geomagn. Geoelectr., v.11. pp.85–93.

    Google Scholar 

  • Uyeda S., Fuller M.D., Belshé J.C. and Girdler, R.W. (1963) Anisotropy of magnetic susceptibility of rocks and minerals. Jour. Geophys. Res., v.68, pp.279–292.

    Article  Google Scholar 

  • Zapletal., K. (1985) Mean susceptibility and magnetic anisotropy of biotite (in Czech). In: F. Hrouda, V. Jelínek and K. Zapletal (Eds.), The use of magnetic properties of rocks in ore and oil geophysics. Unpublished report of Geofyzika, n.p., Brno, pp.54–75.

    Google Scholar 

  • Zapletal, K. (1990) Low-field susceptibility anisotropy of some biotite crystals. Phys. Earth Planet. Inter., v.63, pp.85–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Hrouda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrouda, F. Modelling relationship between bulk susceptibility and AMS in rocks consisting of two magnetic fractions represented by ferromagnetic and paramagnetic minerals — Implications for understanding magnetic fabrics in deformed rocks. J Geol Soc India 75, 254–266 (2010). https://doi.org/10.1007/s12594-010-0013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-010-0013-0

Keywords

Navigation