Skip to main content
Log in

Linear Instability of Electromagnetic Viscoelastic Nanofluid: Analytical and Numerical Study

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this study, the effect of the induced electromagnetic fields on the linear instability of a viscoelastic nanofluid liquid layer is discussed. Two physical cases are considered for the channel flow. The first one is considered for the free–free boundaries and the second for the rigid–rigid boundaries. The instability is investigated analytically due to the normal mode analysis and numerically according to the relation between the energy density function and time. The Routh–Hurwitz criteria are applied. The dispersion relation is obtained as a sixth-degree equation of the growth rate. Also, the stationary, as well as oscillatory states of the thermal Rayleigh number, are obtained. The numerical solution is compared with the exact solution for a special choice of the parameters and the results show higher match between the results. The main important result of the study concludes that the Brownian motion of the nanoparticles destabilizes the nanofluid layer. This means that the pure fluid layer is more stable than the nanofluid layer. Also, the results confirm that the flow between the rigid–rigid boundaries is more stable than the free–free boundaries. Finally, due to the Lorentz force, the induced magnetic field destabilizes the motion due to the temperature rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen, J., Lee, J.D., Liang, C.: Constitutive equations of micropolar electromagnetic fluids. J. Non-Newton. Fluid Mech. 166, 867–874 (2011)

    Article  MATH  Google Scholar 

  2. Voit, W., Kim, D.K., Zapka, W., Muhammed, M., Rao, K.V.: Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. Mater. Res. Soc. Symp. Proc. (2001). https://doi.org/10.1557/PROC-676-Y7.8

    Article  Google Scholar 

  3. Sheikholeslami, M., Shah, Z., Tassaddiq, A., Shafee, A., Khan, I.: Application of electric field for augmentation of ferrofluid heat transfer in an enclosure including double moving walls. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2896206

    Article  Google Scholar 

  4. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  5. Sheikholeslami, M., Shah, Z., Shafee, A., Khan, I., Tlili, I.: Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle. Sci. Rep. 9, 1196 (2019). https://doi.org/10.1038/s41598-018-37964-y

    Article  Google Scholar 

  6. Vo, D.D., Shah, Z., Sheikholeslami, M., Shafee, A., Nguyen, T.K.: Numerical investigation of MHD nanomaterial convective migration and heat transfer within a sinusoidal porous cavity. Phys. Scr. 94, 115225 (2019)

    Article  Google Scholar 

  7. Shah, Z., Dawar, A., Alzahrani, E.O., Kumam, P., Khan, A.J., Islam, S.: Hall effect on couple stress 3D nanofluid flow over an exponentially stretched surface with Cattaneo Christov heat flux model. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2916162

    Article  Google Scholar 

  8. Shah, Z., Islam, S., Gul, T., Bonyah, E., Khan, M.A.: The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates. Res. Phys. 9, 1201–1214 (2018)

    Google Scholar 

  9. Jawad, M., Shah, Z., Khan, A., Khan, W., Kumam, P., Islam, S.: Entropy generation and heat transfer analysis in MHD unsteady rotating flow for aqueous suspensions of carbon nanotubes with nonlinear thermal radiation and viscous dissipation effect. Entropy 21, 492 (2019). https://doi.org/10.3390/e21050492

    Article  MathSciNet  Google Scholar 

  10. Yadav, D., Lee, J.: The onset of MHD nanofluid convection with Hall current effect. Eur. Phys. J. Plus 130, 162–184 (2015)

    Article  Google Scholar 

  11. Buongiorno, J.: Convective transport in nanofluids. J. Heat Trans. ASME 128, 240–250 (2006)

    Article  Google Scholar 

  12. Ali, A., Ali, Y., Kumam, P., Babar, K., Ahmed, A., Shah, Z.: Flow of a nanofluid and heat transfer in channel with contracting/expanding walls. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2928030

    Article  Google Scholar 

  13. Shah, Z., Islam, S., Ayaz, H., Khan, S.: Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of Hall current. J. Heat Trans. 141(2), 022401 (2019). https://doi.org/10.1115/1.4040415

    Article  Google Scholar 

  14. Shah, Z., Dawarb, A., Islamb, S., Khana, I., Ching, D.L.C.: Darcy–Forchheimer flow of radiative carbon nanotubes with microstructure and inertial characteristics in the rotating frame. Case Stud. Ther. Eng. 12, 823–832 (2018)

    Article  Google Scholar 

  15. Nasir, S., Shah, Z., Islam, S., Bonyah, E., Gul, T.: Darcy Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet. AIP Adv. 9, 015223 (2019). https://doi.org/10.1063/1.5083972

    Article  Google Scholar 

  16. Ahmad, M.W., Kumam, P., Shah, Z., Farooq, A.A., Nawaz, R., Dawar, A., Islam, S., Thounthong, P.: Darcy–Forchheimer MHD couple stress 3D nanofluid over an exponentially stretching sheet through Cattaneo–Christov convective heat flux with zero nanoparticles mass flux conditions. Entropy 21, 867 (2019). https://doi.org/10.3390/e21090867

    Article  MathSciNet  Google Scholar 

  17. Shafiq, A., Hammouch, Z., Sindhu, T.N.: Bioconvective MHD flow of tangent hyperbolic nanofluid with Newtonian heating. Int. J. Mech. Sci. 133, 759–766 (2017)

    Article  Google Scholar 

  18. Haq, R., Soomro, F.A., Hammouch, Z.: Heat transfer analysis of CuO-water enclosed in a partially heated rhombus with heated square obstacle. Int. J. Heat Mass Trans. 118, 773–784 (2018)

    Article  Google Scholar 

  19. Haq, R., Soomro, F.A., Hammouchc, Z., Rehman, S.: Heat exchange within the partially heated C-shape cavity filled with the water based SWCNTs. Int. J. Heat Mass Trans. 127, 506–514 (2018)

    Article  Google Scholar 

  20. Yadav, D.: Electrohydrodynamic instability in a heat generating porous layer saturated by a dielectric nanofluid. J. Appl. Fluid Mech. 10(3), 763–776 (2017)

    Article  Google Scholar 

  21. Yadav, D., Wang, J., Lee, J., Cho, H.H.: Numerical investigation of the effect of magnetic field on the onset of nanofluid convection. App. Ther. Eng. 103, 1441–1449 (2016)

    Article  Google Scholar 

  22. Nield, D.A., Kuznetsov, A.V.: The onset of convection in a horizontal nanofluid layer of finite depth: a revised model. Int. J. Heat Mass Trans. 77, 915–918 (2014)

    Article  Google Scholar 

  23. Fong, C.F., Walters, K.: The solution of flow problems in the case of materials with memory. II. The stability of plane Poiseuille flow of slightly viscoelastic liquids. J. Mech. 4, 439–453 (1965)

    MathSciNet  Google Scholar 

  24. Sheu, L.J.: Linear stability of convection in a viscoelastic nanofluid Layer. World Acad. Sci. Eng. Technol. 5, 232–238 (2011)

    Google Scholar 

  25. Sheu, L.J.: Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid. Trans. Porous Media 88, 461–477 (2011)

    Article  MathSciNet  Google Scholar 

  26. Umavathi, J.C.: Effect of modulation on the onset of thermal convection in a viscoelastic fluid-saturated nanofluid porous layer. Int. J. Eng. Res. Appl. 3, 923–942 (2013)

    Google Scholar 

  27. Moatimid, G.M., Hassan, M.A.: Convection instability of non-Newtonian Walter’s nanofluid along a vertical layer. J. Egypt Math. Soc. 25, 220–229 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nield, D.A., Kuznetsov, A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B Fluids 29, 217–223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Beard, D.W., Walters, K.: Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point. Proc. Camb. Philos. Soc. 60(3), 667–674 (1964). https://doi.org/10.1017/S0305004100038147

    Article  MathSciNet  MATH  Google Scholar 

  30. Haddad, Z., Abu-Nada, E., Oztop, H.F., Mataoui, A.: Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? Int. J. Ther. Sci. 57, 152–162 (2012)

    Article  Google Scholar 

  31. Engineering ToolBox, Dielectric Constants of common Liquids. (2008). www.engineeringtoolbox.com/liquid-dielectric-constants-d_1263.html. Accessed Apr 2018

  32. Pakravan, H.A., Yaghoubi, M.: Combined thermophoresis, Brownian motion and Dufour effects on natural convection of nanofluids. Int. J. Ther. Sci. 50, 394–402 (2011)

    Article  Google Scholar 

  33. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  34. Hayat, T., Noreen, S., Alsaedi, A.: Slip and induced magnetic field effects on peristaltic transport of Johnson–Segalman fluid. Appl. Math. Mech. Engl. Ed. 33(8), 1035–1048 (2012)

    Article  MathSciNet  Google Scholar 

  35. Ezzat, M.A., Awad, E.S.: Micropolar generalized magneto-thermoelasticity with modified Ohm’s and Fourier’s laws. J. Math. Anal. Appl. 353, 99–113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gupta, U., Ahuja, J., Kumar, R., Wanchoo, R.K.: On the hydromagnetic stability of a horizontal nanofluid layer with hall currents. Mater. Phys. Mech. 27, 9–21 (2016)

    Google Scholar 

  37. Ishida, Y., Yamamoto, T.: Linear and nonlinear rotordynamics. Wiley-VCH Verlag, Weinheim (2012)

    Book  Google Scholar 

  38. Criminale, W.O., Jackson, T.L., Lasseigne, D.G., Joslin, R.D.: Perturbation dynamics in viscous channel flows. J. Fluid Mech. 339, 55–75 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cengel, Y.A.: Heat and Mass Transfer, 2nd edn. McGraw-Hill, New York (2002)

    Google Scholar 

  40. Probstein, R.F.: Physicochemical Hydrodynamics: An Introduction, 2nd edn. A Wiley-Interscience Publication, New York (1994)

    Book  Google Scholar 

  41. Feynman, R.: The Brownian movement. Feynman Lec. Phys. (1964). http://feynmanlectures.caltech.edu/I_41.html. Accessed 30 Oct 2019

  42. Chieruzzi, M., Cerritelli, G.F., Miliozzi, A., Kenny, J.M.: Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res. Lett. 8, 448 (2013)

    Article  Google Scholar 

  43. Web site: Engineeringtoolbox (2009). https://www.engineeringtoolbox.com/prandtl-number-d_1068.html. Accessed 25 Jan 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Constants of the Free–Free Boundaries

The elements of the determinant that appear in Eq. (34), are written as follows

\(a_{11} = \left( {1 - i\,\omega \,\lambda } \right)\,\alpha^{4} + i\,\omega \,{\text{Re}} \,\alpha^{2} + Ha^{2} \,\pi^{2}\), \(a_{12} = - \frac{i\,k\,Ra}{{{\text{Re}} \,\Pr }}\), \(a_{13} = \frac{{i\,k\,R_{N} }}{{{\text{Re}} \,\Pr }}\), \(a_{21} = i\,k\,{\text{Re}} \,\Pr\), \(a_{22} = \alpha^{2} + i\,\omega \,{\text{Re}} \,\Pr\), \(a_{31} = - i\,k\,N_{A} \,{\text{Re}} \,\Pr \,Le\), \(a_{32} = N_{A} \,\alpha^{2}\), \(a_{33} = \alpha^{2} + i\,\omega \,{\text{Re}} \,\Pr \,Le\), \(a_{44} = \alpha^{2} - \omega^{2} + i\,\omega \,{\text{Re}}_{m}\), \(a_{54} = - 1\), \(a_{55} = {\text{Re}}_{m} + i\,\omega\).

The dispersion relation coefficients in Eq. (35) \(c_{0} - c_{6}\) and \(d_{0} - d_{6}\) are written as follows

$$ c_{f1} = c_{f3} = c_{f5} = d_{f2} = d_{f4} = d_{f6} = 0, $$
$$ c_{f0} = Le\,\alpha^{2} \,\Pr^{2} {\text{Re}}^{2} (\alpha^{2} \lambda - {\text{Re}} ), $$
$$ \begin{aligned} c_{f2} & = - \alpha^{8} \lambda + {\text{Re}} \,(Ha^{2} (1 + Le)\,\pi^{2} \,\alpha^{2} \,\Pr + (1 + \Pr + Le\,\Pr )\,\alpha^{6} + \Pr \,( - Le\,a_{12} \,a_{21} - a_{13} \,a_{31} \\ & \quad + Le\,\Pr \,\alpha^{4} \,{\text{Re}} \,( - \alpha^{2} \lambda + {\text{Re}} ) + 2( - (1 + Le)\,\alpha^{6} \,\lambda + (Ha^{2} Le\,\pi^{2} \Pr \\ & \quad + (1 + Le + Le\,\Pr )\alpha^{4} ){\text{Re}} ){\text{Re}}_{m} + Le\,\Pr \,\alpha^{2} {\text{Re}} \,{\text{Re}}_{m}^{2} ( - \alpha^{2} \lambda + {\text{Re}} )\,)), \\ \end{aligned} $$
$$ \begin{aligned} c_{f4} & = \alpha^{10} \lambda - \Pr \,\alpha^{2} \,(Ha^{2} Le\,\pi^{2} \Pr + (1 + Le + Le\,\Pr )\,\alpha^{4} )\,{\text{Re}}^{2} {\text{Re}}_{m} \\ & \quad + {\text{Re}}_{m} (2\alpha^{2} a_{12} a_{21} - 2\,(Ha^{2} \,\pi^{2} \alpha^{4} + \alpha^{8} + a_{13} ( - \alpha^{2} a_{31} + a_{21} a_{32} )) + \alpha^{8} \lambda \,{\text{Re}}_{m} ) \\ & \quad + {\text{Re}} ( - Ha^{2} \,(1 + Le)\,\pi^{2} \Pr \alpha^{4} - (1 + Le + Le\,\Pr )\,\alpha^{8} + (1 + Le)\Pr \alpha^{8} \,\lambda \,{\text{Re}}_{m} \\ & \quad - \alpha^{2} (\alpha^{4} + (1 + Le)\,\Pr \,(Ha^{2} \pi^{2} + \alpha^{4} )){\text{Re}}_{m}^{2} + Le\,\Pr \,a_{12} a_{21} (\alpha^{2} + {\text{Re}}_{m}^{2} ) + \Pr a_{13} a_{31} (\alpha^{2} + {\text{Re}}_{m}^{2} )), \\ \end{aligned} $$
$$ c_{f6} = \frac{{{\text{Re}}_{m} \alpha^{4} (Ha^{2} \pi^{2} - k^{2} Ra + \alpha^{6} \, - k^{2} \,R_{N} N_{A} (1 + Le))}}{Le}, $$
$$ \begin{aligned} d_{f1} & = \Pr \,{\text{Re}} \,( - (1 + Le)\,\alpha^{6} \lambda + {\text{Re}} \,(Ha^{2} Le\,\pi^{2} \,\Pr + (1 + Le + Le\,\Pr )\,\alpha^{4} \\ & \quad + 2\,Le\,\Pr \,\alpha^{2} \,{\text{Re}}_{m} \,( - \alpha^{2} \,\lambda + {\text{Re}} ))), \\ \end{aligned} $$
$$ \begin{aligned} d_{f3} & = - (Ha^{2} \,\pi^{2} \alpha^{4} + \alpha^{8} + \Pr \,\alpha^{2} \,{\text{Re}} \,( - (1 + Le)\alpha^{6} \lambda + (Ha^{2} Le\,\pi^{2} \Pr + (1 + Le + Le\,\Pr )\alpha^{4} ){\text{Re}} ) \\ & \quad + \alpha^{2} ( - 2\alpha^{6} \lambda + {\text{Re}} \,((2(\alpha^{4} + (1 + Le)\Pr \,(Ha^{2} \pi^{2} + \alpha^{4} )) + Le\,\Pr^{2} \alpha^{2} {\text{Re}} ( - \alpha^{2} \lambda + {\text{Re}} )))){\text{Re}}_{m} \\ & \quad + \Pr \,{\text{Re}} \,( - (1 + Le)\alpha^{6} \lambda + (Ha^{2} Le\,\pi^{2} \Pr + (1 + Le + Le\,\Pr )\alpha^{4} ){\text{Re}} ){\text{Re}}_{m}^{2} \\ & \quad - a_{12} a_{21} (\alpha^{2} + 2\,Le\Pr {\text{Re}} {\text{Re}}_{m} ) + a_{13} (a_{21} a_{32} - a_{31} (\alpha^{2} + 2\,\Pr \,{\text{Re}} \,{\text{Re}}_{m} ))), \\ \end{aligned} $$
$$ \begin{aligned} d_{f5} & = - \alpha^{2} \,a_{12} a_{21} (\alpha^{2} + Le\,\Pr \,{\text{Re}} \,{\text{Re}}_{m} + {\text{Re}}_{m}^{2} ) - a_{13} ( - a_{21} a_{32} (\alpha^{2} + {\text{Re}}_{m}^{2} ) \\ & \quad + \alpha^{2} a_{31} (\alpha^{2} + \Pr \,{\text{Re}} \,{\text{Re}}_{m} + {\text{Re}}_{m}^{2} )) + \alpha^{4} (Ha^{2} \pi^{2} \alpha^{2} + \alpha^{6} + {\text{Re}}_{m} ( - \alpha^{6} \lambda \\ & \quad + (\alpha^{4} + (1 + Le)\Pr (Ha^{2} \pi^{2} + \alpha^{4} )){\text{Re}} + (Ha^{2} \pi^{2} + \alpha^{4} ){\text{Re}}_{m} )), \\ \end{aligned} $$

The constants \(m_{f1} - m_{f5}\) and \(n_{f1} - n_{f5}\) that appear in Eqs. (39) are defined as

$$ m_{f1} = i\,k\,Le\,a_{21} ,\quad m_{f2} = \frac{{i\,k\,a_{21} (\alpha^{2} + 2\,Le\,\Pr \,{\text{Re}} \,{\text{Re}}_{m} )}}{{\Pr \,{\text{Re}} }}, $$
$$ m_{f3} = \frac{{i\,k\,a_{21} (2\alpha^{2} {\text{Re}}_{m} + Le\,\Pr \,{\text{Re}} \,\alpha^{2} {\text{Re}}_{m}^{3} )}}{{\Pr \,{\text{Re}} }}, $$
$$ m_{f4} = \frac{{ - i\,k\,\alpha^{2} a_{21} (\alpha^{2} + Le\,\Pr \,{\text{Re}} \,{\text{Re}}_{m} + {\text{Re}}_{m}^{2} )}}{{\Pr \,{\text{Re}} }}, $$
$$ m_{f4} = \frac{{ - i\,k\,\alpha^{2} a_{21} (\alpha^{2} + Le\,\Pr \,{\text{Re}} \,{\text{Re}}_{m} + {\text{Re}}_{m}^{2} )}}{{\Pr \,{\text{Re}} }},\quad m_{f5} = \frac{{i\,k\,\alpha^{4} a_{21} \,{\text{Re}}_{m} }}{{\Pr \,{\text{Re}} }}, $$
$$ \begin{gathered} n_{f1} = - \alpha^{8} \lambda + {\text{Re}} \,(Ha^{2} (1 + Le)\,\pi^{2} \,\alpha^{2} \,\Pr + (1 + \Pr + Le\,\Pr )\,\alpha^{6} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\, + \Pr \,( - a_{13} \,a_{31} - 2(1 + Le)\,\alpha^{6} \,\lambda {\text{Re}}_{m} + Le\,\Pr \,\alpha^{2} {\text{Re}}^{2} (\alpha^{2} + {\text{Re}}_{m}^{2} ) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\, + {\text{Re}} ( - Le\,\Pr \,\alpha^{6} \,\lambda + {\text{Re}}_{m\,} (2Ha^{2} Le\,\pi^{2} \Pr + 2\left( {1 + Le + Le\,\Pr } \right)\alpha^{4} - Le\,\Pr \,\alpha^{4} \lambda \,{\text{Re}}_{m} )))), \hfill \\ \end{gathered} $$
$$ \begin{gathered} n_{f2} = Ha^{2} \,\pi^{2} \alpha^{4} + \alpha^{8} + \Pr \,\alpha^{2} \,{\text{Re}} \,( - (1 + Le)\alpha^{6} \lambda + (Ha^{2} Le\,\pi^{2} \Pr + \left( {1 + Le + Le\,\Pr } \right)\alpha^{4} ){\text{Re}} ) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\, + \alpha^{2} ( - 2\alpha^{6} \lambda + {\text{Re}} \,(2(\alpha^{4} + \left( {1 + Le} \right)\Pr \,(Ha^{2} \pi^{2} + \alpha^{4} )) + Le\,\Pr^{2} \alpha^{2} {\text{Re}} ( - \alpha^{2} \lambda + {\text{Re}} ))){\text{Re}}_{m} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\, + \Pr \,{\text{Re}} \,( - (1 + Le)\alpha^{6} \lambda + (Ha^{2} Le\,\pi^{2} \Pr + \left( {1 + Le + Le\,\Pr } \right)\alpha^{4} ){\text{Re}} ){\text{Re}}_{m}^{2} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\, + a_{13} (a_{21} a_{32} - a_{31} (\alpha^{2} + 2\,\Pr \,{\text{Re}} \,{\text{Re}}_{m} )), \hfill \\ \end{gathered} $$
$$ \begin{gathered} n_{f3} = - \alpha^{10} \lambda + 2(Ha^{2} \,\pi^{2} \,\alpha^{4} + \alpha^{8} + a_{13} \,( - \alpha^{2} a_{31} + a_{21} a_{32} )){\text{Re}}_{m} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\, + \Pr \,\alpha^{2} (Ha^{2} Le\,\pi^{2} \Pr + (1 + Le + Le\,\Pr )\alpha^{4} ){\text{Re}}^{2} {\text{Re}}_{m} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\, - \alpha^{8} \lambda {\text{Re}}_{m}^{2} + {\text{Re}} (Ha^{2} \pi^{2} \Pr \alpha^{4} (1 + Le) + \alpha^{8} (1 + \Pr + Le\,\Pr ) - \Pr \alpha^{8} \lambda {\text{Re}}_{m} (1 + Le) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\, + \alpha^{2} (\alpha^{4} + (1 + Le)\Pr (Ha^{2} + \pi^{2} + \alpha^{4} )){\text{Re}}_{m}^{2} - \Pr \,a_{13} a_{31} (\alpha^{2} + {\text{Re}}_{m}^{2} )), \hfill \\ \end{gathered} $$
$$ \begin{gathered} n_{f4} = - \alpha^{4} (Ha^{2} \pi^{2} \,\alpha^{2} + \alpha^{6} + {\text{Re}}_{m} \,( - \alpha^{6} \lambda + (\alpha^{4} + (1 + Le)\Pr (Ha^{2} \pi^{2} + \alpha^{4} )){\text{Re}} + {\text{Re}}_{m} (Ha^{2} \pi^{2} + \alpha^{4} )) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\, + \,a_{13} ( - a_{21} a_{32} (\alpha^{2} + {\text{Re}}_{m}^{2} ) + \alpha^{2} a_{31} (\alpha^{2} + \Pr \,{\text{Re}} \,{\text{Re}}_{m} + {\text{Re}}_{m}^{2} ))), \hfill \\ \end{gathered} $$
$$ n_{f5} = \alpha^{2} (Ha^{2} \,\pi^{2} \,\alpha^{4} + \alpha^{8} + a_{31} ( - \alpha^{2} a_{31} + a_{21} a_{32} )){\text{Re}}_{m} . $$

The Constants of the Rigid–Rigid Boundaries

The elements of the determinant that appear in Eq. (42), are written as follows

\(\begin{gathered} b_{11} = \left( {\frac{{k^{4} }}{30} + 24} \right)\left( {1 - i\,\omega \,\lambda } \right)\, + \frac{{i\,\omega \,{\text{Re}} \,k^{2} }}{30},b_{12} = - \frac{i\,k\,Ra}{{6{\text{Re}} \,\Pr }},b_{13} = \frac{{i\,k\,R_{N} }}{{6{\text{Re}} \,\Pr }}, \hfill \\ b_{21} = \frac{1}{30}i\,k\,{\text{Re}} \,\Pr ,b_{22} = \frac{1}{6}k^{2} + \frac{1}{6}i\,\omega \,{\text{Re}} \,\Pr + 2,b_{31} = \frac{{ - i\,k\,N_{A} \,{\text{Re}} \,\Pr }}{30}, \hfill \\ b_{32} = \frac{{N_{A} \,k^{2} }}{6\,Le} + \frac{{2\,N_{A} }}{Le},b_{33} = \frac{{k^{2} }}{6\,Le} + \frac{{i\,\omega \,{\text{Re}} \,\Pr }}{6} + \frac{2}{Le},b_{44} = \frac{1}{6}(\omega^{2} - k^{2} - i\,\omega \,{\text{Re}}_{m} ) - 2, \hfill \\ b_{54} = - \frac{1}{6},b_{55} = \frac{1}{6}({\text{Re}}_{m} + i\,\omega ). \hfill \\ \end{gathered}\)

The dispersion relation coefficients in Eq. (43) are

$$ c_{r1} = c_{r3} = c_{r5} = d_{r2} = d_{r4} = d_{r6} = 0, $$
$$ c_{r0} = \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)(\Pr^{2} {\text{Re}}^{2} (k^{2} {\text{Re}} - (720 + k^{4} ))), $$
$$ \begin{gathered} c_{r2} = \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)\,((12 + k^{2} )^{2} (720 + k^{4} )\lambda - k^{2} Le\,\Pr^{2} {\text{Re}}^{3} (12 + k^{2} + {\text{Re}}_{m}^{2} ) \hfill \\ \,\,\,\,\,\,\,\,\, + \Pr^{2} {\text{Re}}^{2} (12 + k^{2} )(720 + k^{4} )Le\,\,\lambda - 2\Pr {\text{Re}}^{2} \,{\text{Re}}_{m} (k^{2} (12 + k^{2} )(1 + Le) \hfill \\ \,\,\,\,\,\,\,\,\, + (720 + k^{4} )Le\,\Pr + (720 + k^{4} )\,Le\,\Pr \,\lambda \,{\text{Re}}_{m}^{2} ) + \Pr^{2} {\text{Re}}^{3} (180Le\Pr b_{12} b_{21} + 180Le\Pr b_{13} b_{31} \hfill \\ \,\,\,\,\,\,\,\,\, + (12 + k^{2} )( - k^{2} (12 + k^{2} ) - (720 + k^{4} )(1 + Le)\Pr \,\lambda \,{\text{Re}}_{m} ))), \hfill \\ \end{gathered} $$
$$ \begin{gathered} c_{r4} = \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)\,( - (12 + k^{2} )^{3} (720 + k^{4} )\lambda + 2((12 + k^{2} )^{2} (720 + k^{4} ) - 180(12 + k^{2} )b_{12} b_{21} \hfill \\ \,\,\,\,\,\,\,\,\,\,\, - 180\,Le\,b_{13} ((12 + k^{2} )b_{31} - 6b_{21} b_{32} )){\text{Re}}_{m} + (12 + k^{2} )\Pr (k^{2} (12 + k^{2} )(1 + Le) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\, + (720 + k^{4} )Le\,\Pr ){\text{Re}}^{2} {\text{Re}}_{m} - (12 + k^{2} )^{2} (720 + k^{4} )\lambda {\text{Re}}_{m}^{2} \backslash \hfill \\ \,\,\,\,\,\,\,\,\,\,\, + {\text{Re}} ( - 180Le\,\Pr b_{21} b_{12} (12 + k^{2} + {\text{Re}}_{m}^{2} ) - 180Le\,\Pr b_{31} b_{13} (12 + k^{2} + {\text{Re}}_{m}^{2} )\, \hfill \\ \,\,\,\,\,\,\,\,\,\, + (12 + k^{2} )((12 + k^{2} )(k^{2} (12 + k^{2} ) + (720 + k^{4} )(1 + Le)\Pr ) \hfill \\ \,\,\,\,\,\,\,\,\,\,\, - (12 + k^{2} )(720 + k^{4} )(1 + Le)\Pr \,\lambda \,{\text{Re}}_{m} + (k^{2} (12 + k^{2} ) + (720 + k^{4} )(1 + Le)\Pr ){\text{Re}}_{m}^{2} \,), \hfill \\ \end{gathered} $$
$$ \begin{gathered} c_{r6} = - \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)\,\,((12 + k^{2} )(\,(12 + k^{2} )((12 + k^{2} )(720 + k^{4} ) - 180b_{12} b_{21} - 180Leb_{31} b_{13} ) \hfill \\ \,\,\,\,\,\,\, + 1080Le\,b_{31} b_{21} b_{32} ){\text{Re}}_{m} ), \hfill \\ \end{gathered} $$

\(\begin{gathered} d_{r1} = \,\left( {{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {38880\,}}} \right. \kern-\nulldelimiterspace} {38880\,}}} \right)\,({\text{Re}} \Pr ( - \lambda (12 + k^{2} )(720 + k^{4} )(1 + Le) + {\text{Re}} k^{2} (12 + k^{2} )(1 + Le) \hfill \\ \,\,\,\,\,\,\,\, + (720 + k^{4} )Le\,\Pr {\text{Re}} - 2\,Le\,\Pr \,{\text{Re}} ((720 + k^{4} )\lambda - k^{2} {\text{Re}} ){\text{Re}}_{m} )), \hfill \\ \end{gathered}\)

\( \begin{aligned} d_{{r3}} & = (1/38880\,Le)\,((12 + k^{2} )^{2} (720 + k^{4} ) - 103,680\,\,\Pr \lambda \text{Re} - 17280\,\,k^{2} \Pr \lambda \text{Re} \\ & - \quad 864\,k^{4} \,\Pr \,\lambda \text{Re} - 24\,\,k^{6} \,\Pr \,\lambda \text{Re} - \,k^{8} \,\Pr \,\lambda \text{Re} - 103680Le\,\Pr \,\lambda \text{Re} \\ & - \quad 17,280\,k^{2} Le\,\Pr \,\lambda \text{Re} - 864\,k^{4} Le\,\Pr \,\lambda \text{Re} - 24\,k^{6} Le\,\Pr \,\lambda \text{Re} - k^{8} Le\,\Pr \,\lambda \text{Re} \\ & + \quad 144\,k^{2} \Pr \,\text{Re} ^{2} + 24\,k^{4} \Pr \,\text{Re} ^{2} + k^{6} \Pr \,\text{Re} ^{2} + 144\,k^{2} Le\Pr \,\text{Re} ^{2} + 24\,k^{4} Le\Pr \,\text{Re} ^{2} \\ & + \quad k^{6} Le\Pr \,\text{Re} ^{2} + 8640Le\Pr ^{2} \,\text{Re} ^{2} + 720k^{2} Le\Pr ^{2} \,\text{Re} ^{2} + 12k^{4} Le\Pr ^{2} \,\text{Re} ^{2} + k^{6} Le\Pr ^{2} \,\text{Re} ^{2} \\ & - \quad (12 + k^{2} )(2(12 + k^{2} )(720 + k^{4} )\lambda + \text{Re} ( - 2k^{2} (12 + k^{2} ) - 2(720 + k^{4} )(1 + Le)\Pr \\ & + \quad Le\,\Pr ^{2} \text{Re} ((720 + k^{4} )\lambda - k^{2} \text{Re} )))\text{Re} _{m} + \Pr \,\text{Re} ( - (12 + k^{2} )(720 + k^{4} )(1 + Le)\lambda \\ & + \quad (k^{2} (12 + k^{2} )(1 + Le) + (720 + k^{4} )Le\,\Pr )\text{Re} )\text{Re} _{m}^{2} - 180\,b_{{12}} b_{{21}} (12 + k^{2} + 2\,Le\Pr \,\text{Re} \text{Re} _{m} ) \\ & - \quad 180\,Le\,b_{{13}} ( - 6b_{{21}} b_{{32}} + b_{{31}} (12 + k^{2} + 2\,\Pr \,\text{Re} \,\text{Re} _{m} ))), \\ \end{aligned} \)

$$ \begin{aligned} d_{r5} & = \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)\,\,((12 + k^{2} )^{2} ( - (12 + k^{2} )(720 + k^{4} ) - ((k^{2} (12 + k^{2} ) + (720 + k^{4} )(1 + Le)\Pr ){\text{Re}} \\ & \quad - (720 + k^{4} )((12 + k^{2} )\lambda - {\text{Re}}_{m} )){\text{Re}}_{m} \,) + 180(12 + k^{2} )b_{12} b_{21} (12 + k^{2} + Le\Pr {\text{Re}} {\text{Re}}_{m} + {\text{Re}}_{m}^{2} ) \\ & \quad + 180Le\,b_{13} ( - 6b_{21} b_{32} (12 + k^{2} + {\text{Re}}_{m}^{2} ) + (12 + k^{2} )b_{31} (12 + k^{2} + \Pr {\text{Re}} {\text{Re}}_{m} + {\text{Re}}_{m}^{2} ))), \\ \end{aligned} $$

The constants \(m_{r1} - m_{r5}\) and \(n_{r1} - n_{r5}\) that appear in Eq. (46) are defined as

$$ m_{r1} = - {{i\,k\,b_{21} } \mathord{\left/ {\vphantom {{i\,k\,b_{21} } {1296}}} \right. \kern-\nulldelimiterspace} {1296}},m_{r2} = - {{i\,k\,b_{21} (12 + k^{2} + 2Le\,\Pr \,{\text{Re}} \,{\text{Re}}_{m} )} \mathord{\left/ {\vphantom {{i\,k\,b_{21} (12 + k^{2} + 2Le\,\Pr \,{\text{Re}} \,{\text{Re}}_{m} )} {1296Le\,\Pr \,{\text{Re}} }}} \right. \kern-\nulldelimiterspace} {1296Le\,\Pr \,{\text{Re}} }}, $$
$$ m_{r3} = \left( {{i \mathord{\left/ {\vphantom {i {1296Le\,\Pr \,{\text{Re}} }}} \right. \kern-\nulldelimiterspace} {1296Le\,\Pr \,{\text{Re}} }}} \right)(k\,b_{21} (2(12 + k^{2} ){\text{Re}}_{m} + Le\,\Pr \,{\text{Re}} (12 + k^{2} + {\text{Re}}_{m}^{2} ))), $$
$$ m_{r4} = - \left( {{i \mathord{\left/ {\vphantom {i {1296Le\,\Pr \,{\text{Re}} }}} \right. \kern-\nulldelimiterspace} {1296Le\,\Pr \,{\text{Re}} }}} \right)(\,k\,(12 + k^{2} )b_{21} (12 + k^{2} + Le\,\Pr \,{\text{Re}} {\text{Re}}_{m} + {\text{Re}}_{m}^{2} )), $$
$$ m_{r5} = - {{i\,k\,b_{21} (12 + k^{2} )^{2} {\text{Re}}_{m} } \mathord{\left/ {\vphantom {{i\,k\,b_{21} (12 + k^{2} )^{2} {\text{Re}}_{m} } {1296Le\,\Pr \,{\text{Re}} }}} \right. \kern-\nulldelimiterspace} {1296Le\,\Pr \,{\text{Re}} }}, $$
$$ \begin{aligned} n_{r1} & = \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)\,((12 + k^{2} )^{2} (720 + k^{4} )\lambda + {\text{Re}} (\,180\,Le\,\Pr \,b_{13} b_{31} \\ & \quad + (12 + k^{2} )( - k^{2} (12 + k^{2} ) - (720 + k^{4} )(1 + Le)\Pr + 2(720 + k^{4} )(1 + Le)\Pr \,\lambda \,{\text{Re}}_{m} ) \\ & \quad - k^{2} Le\,\Pr^{2} {\text{Re}}^{2} (12 + k^{2} + {\text{Re}}_{m}^{2} ) + \Pr \,{\text{Re}} ((12 + k^{2} )^{2} (720 + k^{4} )\,Le\,\Pr \lambda \\ & \quad - 2(k^{2} (12 + k^{2} )(1 + Le) + (720 + k^{4} )Le\,\Pr {\text{Re}}_{m} + (720 + k^{4} )Le\,\Pr \lambda {\text{Re}}_{m}^{2} )), \\ \end{aligned} $$
$$ \begin{aligned} n_{r2} & = \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)(k^{2} (12 + k^{2} )Le\,\Pr \,{\text{Re}}^{3} {\text{Re}}_{m} - (12 + k^{2} )^{2} (720 + k^{4} )( - 1 + 2\lambda \,{\text{Re}}_{m} ) \\ & \quad + \Pr \,{\text{Re}}^{2} ((12\,k + k^{3} )^{2} (1 + Le) + (12 + k^{2} )(720 + k^{4} )Le\,\Pr - (12 + k^{2} )(720 + k^{4} )Le\,\Pr \lambda \,{\text{Re}}_{m} \\ & \quad + (k^{2} (12 + k^{2} )(1 + Le) + (720 + k^{4} )Le\,\Pr ){\text{Re}}_{m}^{2} ) \\ & \quad + (12 + k^{2} ){\text{Re}} ( - (12 + k^{2} )(720 + k^{4} )(1 + Le)\,\Pr \,\lambda \\ & \quad + {\text{Re}}_{m} (2k^{2} (12 + k^{2} ) + 2(720 + k^{4} )(1 + Le)\,\Pr - (720 + k^{4} )(1 + Le)\,\Pr \lambda \,{\text{Re}}_{m} )) \\ & \quad - 180\,Le\,b_{13} ( - 6\,b_{21} b_{32} + b_{31} (12 + k^{2} + 2\,\Pr \,{\text{Re}} \,{\text{Re}}_{m} ))), \\ \end{aligned} $$
$$ \begin{aligned} n_{r3} & = \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)\,( - (12 + k^{2} )^{3} (720 + k^{4} )\lambda + (12 + k^{2} )\Pr (k^{2} (12 + k^{2} )(1 + Le) \\ & \quad + (720 + k^{4} )Le\,\Pr ){\text{Re}}^{2} {\text{Re}}_{m} + {\text{Re}}_{m} ( - 360Leb_{13} ((12 + k^{2} )b_{31} - 6b_{21} b_{32} ) \\ & \quad - (12 + k^{2} )^{2} (720 + k^{4} )( - 2 + \lambda {\text{Re}}_{m} )) + {\text{Re}} ( - 180\,Le\,\Pr \,b_{13} \,b_{31} (12 + k^{2} + {\text{Re}}_{m}^{2} ) \\ & \quad + (12 + k^{2} )((12 + k^{2} )(k^{2} (12 + k^{2} ) + (720 + k^{4} )(1 + Le)\Pr ) \\ & \quad - (12 + k^{2} )(1 + Le)(720 + k^{4} )\Pr \,\lambda \,{\text{Re}}_{m} + (k^{2} (12 + k^{2} ) + (720 + k^{4} )(1 + Le)\Pr ){\text{Re}}_{m}^{2} ))),\, \\ \end{aligned} $$
$$ \begin{aligned} n_{r4} & = \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)\,((12 + k^{2} )^{2} ( - (12 + k^{2} )(720 + k^{4} ) \\ & \quad - ((k^{2} (12 + k^{2} ) + (720 + k^{4} )(1 + Le)\,\Pr ){\text{Re}} - (720 + k^{4} )((12 + k^{2} )\lambda - \,{\text{Re}}_{m} )){\text{Re}}_{m} ) \\ & \quad + 180Le\,b_{13} ( - 6\,b_{21} b_{32} (12 + k^{2} + {\text{Re}}_{m}^{2} ) + (12 + k^{2} )b_{31} (12 + k^{2} + \Pr {\text{Re}} {\text{Re}}_{m} + {\text{Re}}_{m}^{2} ))), \\ \end{aligned} $$
$$ n_{r5} = \left( {{1 \mathord{\left/ {\vphantom {1 {38880\,Le}}} \right. \kern-\nulldelimiterspace} {38880\,Le}}} \right)((12 + k^{2} )((12 + k^{2} )^{2} (720 + k^{4} ) - 180Le\,b_{13} ((12 + k^{2} )b_{31} - 6b_{21} b_{32} )){\text{Re}}_{m} ). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.A. Linear Instability of Electromagnetic Viscoelastic Nanofluid: Analytical and Numerical Study. Differ Equ Dyn Syst 31, 427–455 (2023). https://doi.org/10.1007/s12591-020-00541-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-020-00541-9

Keywords

Navigation