Skip to main content
Log in

Holly Type Stability of Set of Solutions of Three Dimensional Stationary Incompressible Magnetohydrodynamic Equations

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, following Holly (Ann Polon Math LIV 2:93–109, 1991; Univ Iagell Acta Math XXXI:154–174, 1994), Holly and Motyl (Inversion of the \(divdiv^{\star }\)-operator and three numerical methods in hydrodynamics, selected Problems in Mathematics. Cracow University of Technology, pp 35–94, 1995) and Motyl (Univ Iagell Acta Math XXXVIII:227–277, 2000; Ann Fac Sci Toulouse XXI(4):651–743, 2012), we study stability of solutions from the perspective of Hausdorff metric. To be precise, we construct a sequence of sets of approximate solutions for stationary MHD equations by using Galerkin approximation method and prove that this sequence of sets converges to the set of actual solutions of stationary MHD equations. The convergence is with respect to Hausdorff metric which is a distance defined on a family of sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Auscher, P., Dubois, S., Tchamitchian, P.: On the stability of global solutions to Navier-Stokes equations in the space. J. Math. Pure Appl. 83(6), 673–697 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bazant, Z., Cedolin, L.: Stability of Structures: Inelastic, Elastic, Fracture and Damage Theories. World Scientific, Singapore (2010)

    Book  Google Scholar 

  4. Benvenutti, M., Ferreira, L.: Existence and stability of global large strong solutions for the Hall-MHD system. Differ. Integr. Equation 29(9/10), 977–1000 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Duvaut, G., Lions, J.L.: In\(\acute{e}\)quations en thermo\(\acute{e}\)lasticit\(\acute{e}\) et magn\(\acute{e}\)tohydrodynamique. Arch. Rat. Mech. Anal. 46(4), 241–279 (1972)

    Article  Google Scholar 

  6. Foias, C., Temam, R.: Structure of the set of stationary solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. XXX, 149–164 (1977)

    Article  MathSciNet  Google Scholar 

  7. Friedlander, S., Pavlovic, N., Shvydkoy, R.: Nonlinear instability for the Navier–Stokes equations. Commun. Math. Phys. 264, 335–347 (2006)

    Article  MathSciNet  Google Scholar 

  8. Holly, K.: Some application of the implicit function theorem to the stationary Navier–Stokes equations. Ann. Polon. Math. LIV. 2, 93–109 (1991)

    Article  MathSciNet  Google Scholar 

  9. Holly, K.: Non-uniqueness of a Galerkin Equation corresponding to the stationary Navier–Stokes system. Univ. Iagell Acta Math. XXX I, 154–174 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Holly, K., Motyl, E.: Inversion of the \(divdiv^{\star }\)-operator and three numerical methods in hydrodynamics, selected Problems in Mathematics, pp. 35–94 . Cracow University of Technology, Kraków (1995)

  11. Ilin, K.I., Trakhinin, Y., Vladimirov, V.A.: The stability of steady magnetohydrodynamic flows with current vortex sheets. Phys. Plasmas 10(7), 2649–2658 (2003)

    Article  MathSciNet  Google Scholar 

  12. Leine, R.I.: The historical development of classical stability concepts: Lagrange Poisson Lyapunov stability. Nonlinear Dyn. 59, 173–182 (2010)

    Article  MathSciNet  Google Scholar 

  13. Mahore, J., Saraykar, R.V.: Nonlinear stability and instability theorems for incompressible magnetohydrodynamic flows. Int. J. Math. Sci. Eng. Appl. 7(6), 349–363 (2013)

    Google Scholar 

  14. Mahore, J., Saraykar, R.V.: Stability of global strong solutions of three dimensional incompressible magnetohydrodynamic equations. Res. J. Math. 1(2), 1–11 (2014)

    Google Scholar 

  15. Motyl, E.: The stationary Navier–Stokes equations—application of the implicit function theorem to the problem of stability. Univ. Iagell Acta Math. XXXVII I, 227–277 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Motyl, E.: Stability for a certain class of numerical methods—abstract approach and application to the stationary Navier–Stokes equations. Ann. Fac. Sci. Toulouse. XXI(4), 651–743 (2012)

    Article  MathSciNet  Google Scholar 

  17. Priede, J., Aleksandrova, S., Molokov, S.: Linear stability of magnetohydrodynamic flow in a perfectly conducting rectangular duct. J. Fluid Mech. 708, 111–127 (2012)

    Article  MathSciNet  Google Scholar 

  18. Raiter, P.D., Saraykar, R.V.: A stability theorem for large solutions of three dimensional incompressible magnetohydrodynamic equations. IOSR J. Math. 7(4), 62–74 (2013)

    Article  Google Scholar 

  19. Rusin, W.: Navier–Stokes equations, stability and minimal perturbations of global solutions. J. Math. Anal. Appl. 386, 115–124 (2012)

    Article  MathSciNet  Google Scholar 

  20. Sanchez, P.E.: Quelques r\(\acute{e}\)sultants d’existence et d’unicit\(\acute{e}\) pour des ecoulements magn\(\acute{e}\)tohydrodynamiques non stationnaires. J. Mech. 8(4), 509–541 (1969)

    Google Scholar 

  21. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  Google Scholar 

  22. Szebehely, V.: Review of concepts of stability. Celest. Mech. 34, 49–64 (1984)

    Article  MathSciNet  Google Scholar 

  23. Tan, Z., Tong, L.: Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Am. Inst. Math. Sci. 37(6), 3435–3465 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Tasso, H., Camargo, S.J.: On the nonlinear stability of dissipative fluids. Il Nuovo Cim. 107 B(7), 733–740 (1992)

    Article  MathSciNet  Google Scholar 

  25. Uddhao, S.V., Saraykar, R.V.: Generic properties of solutions of three-dimensional stationary incompressible magnetohydrodynamic equations. Asian J. Math. Comput. Res. 20(4), 218–231 (2017)

    Google Scholar 

  26. Vladimirov, V.A., Moffatt, H.K.: On general transformation and variational principles for the magnetohydrodynamics of ideal fluids 1. Fundamental principles. J. Fluid Mech. 283, 125–139 (1995)

    Article  MathSciNet  Google Scholar 

  27. Vladimirov, V.A., Moffatt, H.K., Ilin, K.I.: On general transformation and variational principles for the magnetohydrodynamics of ideal fluids 2. Stability criteria for two-dimensional flows. J. Fluid Mech. 329, 187–205 (1996)

    Article  MathSciNet  Google Scholar 

  28. Vladimirov, V.A., Moffatt, H.K., Ilin, K.I.: On general transformation and variational principles for the magnetohydrodynamics of ideal fluids 3. Stability criteria for axisymmetric flows. J. Plasma Phys. 57(1), 89–120 (1997)

    Article  Google Scholar 

  29. Vladimirov, V.A., Moffatt, H.K.: On general transformation and variational principles for the magnetohydrodynamics of ideal fluids 4. Generalized isovorticity principle for three-dimensional flows. J. Fluid Mech. 390, 127–150 (1999)

    Article  MathSciNet  Google Scholar 

  30. Vladimirov, V.A., Ilin, K.I.: On Arnold’s variational principles in fluid mechanics. Fields Institute Communications (2000)

Download references

Acknowledgements

The authors are very grateful to the referees and the Editor for their valuable remarks and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapna V. Uddhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddhao, S.V., Saraykar, R.V. Holly Type Stability of Set of Solutions of Three Dimensional Stationary Incompressible Magnetohydrodynamic Equations. Differ Equ Dyn Syst 29, 35–58 (2021). https://doi.org/10.1007/s12591-019-00503-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-019-00503-w

Keywords

Mathematics Subject Classification

Navigation