Skip to main content
Log in

Application of Homotopy Perturbation Method Using Laplace Transform Intended for Determining the Temperature in the Heterogeneous Casting-Mould System

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we established an application of homotopy perturbation method using Laplace transform (LT-HPM) to elaborate the analytical solution of heat conduction equation in the heterogeneous casting-mould system. The solution of the problem is provided with our supposition of an ideal contact between the cast and the mould. In the proposed method, we have chosen initial approximations of unknown constants which can be implemented by imposing the boundary and initial conditions. Examples have been discussed and confirmed the usefulness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

\(E_{1}\) :

Region of casting

\(E_{2}\) :

Region of mould

L :

Laplace operator

\(L^{-1}\) :

Laplace inverse operator

t :

Time

R :

Thermal resistance (\(\mathrm{m}^{2} \mathrm{K}/\mathrm{w}\))

\(\mathfrak {I}_{\varGamma _{j}}\) :

Thermal conductivity (W/mK)

\(\varGamma _{1}\) :

Temperature in region \(E_{1}\) (K)

\(\varGamma _{2}\) :

Temperature in region \(E_{2}\) (K)

\(\tau \) :

Spatial location (m)

\(\kappa _{j}\) :

Thermal diffusivity (\(\mathrm{m}^{2} /\mathrm{s}\))

\(\delta _{i}\) :

Component of boundary

References

  1. Shakeri, F., Dehghan, M.: Solution of a model describing biological species living together using the variational iteration method. Math. Comput. Model. 48, 685–699 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Hristov, J.: Heat-balance integral to fractional (half-time) heat diffusion sub-model. Therm. Sci. 14, 291–316 (2010)

    Google Scholar 

  3. Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71(1), 16–30 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Kumar, S., Khan, Y., Yildirim, A.: A mathematical modelling arising in the chemical systems and its approximate numerical solution. Asia Pac. J. Chem. Eng. 7(4), 835–840 (2010)

    Google Scholar 

  5. El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M.: Exact solutions of fractional-order biological population model. Commun. Theor. Phys. 52, 992–996 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Grzymkowski, R., Hetmaniok, E., Slota, D.: Application of the homotopy perturbation method for calculation of the temperature distribution in the cast-mould heterogeneous domain. J. Achiev. Mater. Manuf. Eng. 43(1), 299–309 (2010)

    Google Scholar 

  7. Kumar, D., Singh, J., Kumar, S.: A reliable treatment of biological population model by using Laplace transform. Int. J. Mod. Math. Sci. 7(2), m132–142 (2013)

    Google Scholar 

  8. Roul, P.: Application of homotopy perturbation to biological model. Appl. Appl. Math. 5(10), 1369–1379 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Shakeri, F., Dehghan, M.: Numerical solution of a biological population model using He’s variational iteration method. Int. J. Comput. Math. Appl. 54, 1197–1209 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Ganji, D.D., Nourollahi, M., Mohseni, E.: Application of He’s methods to nonlinear chemistry problems. Int. J. Comput. Math. Appl. 54, 1122–1132 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Khuri, S.A.: A new approach to Bratu’s problem. Appl. Math. Comput. 147(1), 131–136 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Kaya, D., Yokus, A.: A numerical comparison of partial solutions in the decomposition method for linear and nonlinear partial differential equations. Math. Comput. Simul. 60, 507–512 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Haldar, K.: Application of Adomian’s approximations to the Navier–Stokes equations in cylindrical coordinates. Appl. Math. Lett. 9, 109–113 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Dehghan, M.: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer. Methods Partial Differ. Equ. 22, 220–257 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Dehghan, M.: The one-dimensional heat equation subject to a boundary integral specification. Chaos Solitons Fractals 32, 661–675 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Gurtin, M.E., Maccamy, R.C.: On the diffusion of biological population. Math. Biosci. 33, 35–49 (1977)

    MathSciNet  MATH  Google Scholar 

  17. Gurney, W.S.C., Nisbet, R.M.: The regulation of inhomogeneous populations. J. Theor. Biol. 52, 441–457 (1975)

    Google Scholar 

  18. Lu, Y.G.: Holder estimates of solutions of biological population equations. Appl. Math. Lett. 13, 123–126 (2000)

    MathSciNet  MATH  Google Scholar 

  19. He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998)

    MathSciNet  MATH  Google Scholar 

  20. He, J.H.: Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. Methods Appl. Mech. Eng. 167, 69–73 (1998)

    MATH  Google Scholar 

  21. He, J.H.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int. J. Non Linear Mech. 34, 699–708 (1999)

    MATH  Google Scholar 

  22. He, J.H., Wu, G.-C., Austin, F.: The variational iteration method which should be followed. Nonlinear Sci. Lett. A 1, 1–30 (2010)

    Google Scholar 

  23. Dehghan, M., Shakeri, F.: Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 13, 53–59 (2008)

    Google Scholar 

  24. Hetmaniok, E., Sota, D., Zielonka, A.: Solution of the solidification problem by using the variational iteration method. Arch. Foundry Eng. 9(4), 63–68 (2009)

    Google Scholar 

  25. Slota, D.: Direct and inverse one-phase Stefan problem solved by variational iteration method. Comput. Math. Appl. 54, 1139–1146 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Slota, D., Zielonka, A.: A new application of He’s variational iteration method for the solution of the one-phase Stefan problem. Comput. Math. Appl. 58, 2489–2494 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Hetmaniok, E., Slota, D., Witua, R., Zielonka, A.: Comparison of the Adomian decomposition method and the variational iteration method in solving the moving boundary problem. Comput. Math. Appl. 61, 1931–1934 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Slota, D.: Exact solution of the heat equation with boundary condition of the fourth kind by He’s variational iteration method. Comput. Math. Appl. 58, 2495–2503 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Madani, M., Fathizadeh, M., Khan, Y., Yildirim, A.: On the coupling of the homotopy perturbation method and Laplace transformation. Math. Comput. Model. 53, 1937–1945 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Wazwaz, A.M.: The variational iteration method for exact solutions of Laplace equation. Phys. Lett. A 363, 260–262 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Wazwaz, A.M.: The variational iteration method for solving linear and nonlinear systems of PDEs. Comput. Math. Appl. 54, 895–902 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Miansari, M., Ganji, D.D.: Application of He’s variational iteration method to nonlinear heat transfer equations. Phys. Lett. A 372, 779–785 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Odibat, Z.M.: A study on the convergence of variational iteration method. Math. Comput. Model. 51, 1181–1192 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Biazar, J., Ghazvini, H.: An analytical approximation to the solution of a wave equation by a variational iteration method. Appl. Math. Lett. 21, 780–785 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Biazar, J., Ghazvini, H.: He’s variational iteration method for solving hyperbolic differential equations. Int. J. Nonlinear Sci. Numer. Simul. 8, 311–314 (2007)

    MATH  Google Scholar 

  36. Salkuyeh, D.K.: Convergence of the variational iteration method for solving linear systems of ODEs with constant coefficients. Comput. Math. Appl. 56, 2027–2033 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Tripathi, R., Mishra, H.K.: Homotopy perturbation method with Laplace transform (LT-HPM) for solving Lane–Emden type differential equations (LETDEs). Springer Plus 5, 1859 (2016). 1-21

    Google Scholar 

  38. Mishra, H.K.: He–Laplace method for special nonlinear partial differential equations. Math. Theory Model. 3(6), 113–117 (2013)

    Google Scholar 

  39. Mishra, H.K.: He–Laplace method for the solution of two-point boundary value problems. Am. J. Math. Anal. 2(3), 45–49 (2014)

    Google Scholar 

  40. Das, S.: Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 57, 483–487 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Yang, S., Xiao, A., Su, H.: Convergence of the variational iteration method for solving multi-order fractional differential equations. Comput. Math. Appl. 60, 2871–2879 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Hristov, J.: Transient flow of a generalized second grade fluid due to a constant surface shear stress: an approximate integral-balance solution. Int. Rev. Chem. Eng. 3, 802–809 (2011)

    Google Scholar 

  43. Salkuyeh, D.K., Ghehsareh, H.R.: Convergence of the variational iteration method for the telegraph equation with integral conditions. Numer. Methods Partial Differ. Equ. 27, 1442–1455 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Saadati, R., Dehghan, M., Vaezpour, S.M., Saravi, M.: The convergence of he’s variational iteration method for solving integral equations. Comput. Math. Appl. 58, 2167–2171 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Hristov, J.: Starting radial subdiffusion from a central point through a diverging medium (a sphere): heat-balance integral method. Therm. Sci. 15(suppl. 1), 5–20 (2011)

    Google Scholar 

  46. Tatari, M., Dehghan, M.: On the convergence of He’s variational iteration method. J. Comput. Appl. Math. 207, 121–128 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Kumar, A., Kumar, S.: A modified analytical approach for fractional discrete KdV equations arising in particle vibrations. Proc. Natl. Acad. Sci. Sect. A Phys. Sci. 88(1), 95–106 (2018).

  48. Singh, J., Kumar, D., Swroop, R., Kumar, S.: An efficient computational approach for time-fractional Rosenau–Hyman equation. Neural Comput. Appl. 1–8 (2017)

  49. Kumar, S., Kumar, A., Odibat, Zaid M.: A nonlinear fractional model to describe the population dynamics of two interacting species. Math. Methods Appl. Sci. 40(11), 4134–4148 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Kumar, S., Kumar, D., Singh, J.: Fractional modelling arising in unidirectional propagation of long waves in dispersive media. Adv. Nonlinear Anal. 5(4), 2013–2033 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hradyesh Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, R., Mishra, H.K. Application of Homotopy Perturbation Method Using Laplace Transform Intended for Determining the Temperature in the Heterogeneous Casting-Mould System. Differ Equ Dyn Syst 30, 301–314 (2022). https://doi.org/10.1007/s12591-018-0417-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-018-0417-7

Keywords

Mathematics Subject Classification

Navigation