Skip to main content
Log in

On Controllability of a Two-Dimensional Network of Ferromagnetic Ellipsoidal Samples

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we address the problem of stability and controllability of two-dimensional network of ferromagnetic particles of ellipsoidal shapes. The dynamics of magnetization inside the ferromagnetic material is governed by the Landau–Lifschitz equation of micromagnetism which is non-linear and parabolic in nature. The control is the magnetic field generated by a dipole whose position and amplitude can be selected. In the absence of control, first we prove the exponential stability of the relevant configurations of the network. Then, we investigate the controllability by the means of external magnetic field induced by the magnetic dipole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Landau, L., Lifschitz, E.: Electrodynamique des Milieux Continus, Cours de Physique Théorique, (French) [Electrodynamic of continuous Media, Theoretical Physics Course]. VIII, Mir, Moscow (1969)

  2. Brown, W.F.: Micromagnetics. Wiley, New York (1963)

    MATH  Google Scholar 

  3. Aharoni, A.: Introduction to the Theory of Ferromagnetism, vol. 109. Clarendon Press (2000)

  4. Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer Science & Business Media (1998)

  5. Alouges, F., Soyeur, A.: On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. Theory Methods Appl. 18, 1071–1084 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, S., Guo, B., Lin, J., Zeng, M.: Global existence of weak solutions for Landau–Lifshitz–Maxwell equations. Discrete Contin. Dyn. Syst. 17, 867–890 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guo, B., Fengqiu, S.: Global weak solution for the Landau–Lifshitz–Maxwell equation in three space dimensions. J. Math. Anal. Appl. 211, 326–346 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carbou, G., Fabrie, P.: Time average in micromagnetism. J. Differ. Equ. 147, 383–409 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carbou, G., Efendiev, M.A., Fabrie, P.: Global weak solutions for the Landau–Lifschitz equation with magnetostriction. Math. Methods Appl. Sci. 34, 1274–1288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Visintin, A.: On Landau Lifschitz equation for ferromagnetism. Jpn. J. Appl. Math. 1, 69–84 (1985)

    Article  MATH  Google Scholar 

  11. Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in a bounded domain. Differ. Integral Equ. 14, 213–229 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in \({\mathbb{R}}^{3}\). Commun. Appl. Anal. 5, 17–30 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Baňas, L., Bartels, S., Prohl, A.: A convergent implicit finite element discretization of the Maxwell–Landau–Lifshitz–Gilbert equation. SIAM J. Numer. Anal 46, 1399–1422 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Labbé, S.: Fast computation for large magnetostatic systems adapted for micromagnetism. SIAM J. Sci. Comput. 26, 2160–2175 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bartels, S., Prohl, A.: Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation. SIAM J. Numer. Anal. 44, 1405–1419 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bagnérés, A., Durbiano, S.: 3D computation of the demagnetizing field in a magnetic material of arbitrary shape. Comput. Phys. Commun. 130, 54–74 (2000)

    Article  MATH  Google Scholar 

  17. Beleggia, M., De Graef, M.: On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach. J. Magn. Magn. Mater. 263, L1–L9 (2003)

    Article  Google Scholar 

  18. Abert, C., Exl, L., Selke, G., Drews, A., Schrefl, T.: Numerical methods for the stray-field calculation: a comparison of recently developed algorithms. J. Magn. Magn. Mater. 326, 176–185 (2013)

    Article  Google Scholar 

  19. Carbou, G., Labbé, S.: Stability for static walls in ferromagnetic nanowires. Discrete Contin. Dyn. Syst. Ser. B 6, 273–290 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Carbou, G.: Stability of static walls for a three-dimensional model of ferromagnetic material. J. Math. Pures Appl. 93, 183–203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carbou, G., Labbé, S.: Stabilization of walls for nanowires of finite length. ESAIM Control Optim. Calc. Var. 18, 1–21 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Labbé, S., Privat, Y., Trélat, E.: Stability properties of steady-states for a network of ferromagnetic nanowires. J. Differ. Equ. 253, 1709–1728 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Carbou, G., Labbé, S., Trélat, E.: Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1, 51–59 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Alouges, F., Beauchard, K.: Magnetization switching on small ferromagnetic ellipsoidal samples. ESAIM Control Optim. Calc. Var. 15, 676–711 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Agarwal, S., Carbou, G., Labbé, S., Prieur, C.: Control of a network of magnetic ellipsoidal samples. Math. Control Relat. Fields 1(2), 129–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)

    Article  Google Scholar 

  27. Griffiths, D.J.: Introduction to Electrodynamics, 3rd edn. Pearson Benjamin Cummings, San Francisco (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shruti Dubey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, S., Dwivedi, S. On Controllability of a Two-Dimensional Network of Ferromagnetic Ellipsoidal Samples. Differ Equ Dyn Syst 27, 277–297 (2019). https://doi.org/10.1007/s12591-018-0407-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-018-0407-9

Keywords

Mathematics Subject Classification

Navigation