Skip to main content
Log in

A Wavelet Based Rationalized Approach for the Numerical Solution of Differential and Integral Equations

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

A wavelet based rationalized method is presented for the numerical solution of differential, integral and integro-differential equations. Rationalized Haar functions are used to estimate the solution. Their fundamental properties are discussed. A rigorous convergence analysis is presented. The operational matrix of the product of two rationalized Haar functions is used to reduce the dynamical system to an algebraic system. A variety of model problems are taken into account so as to test the efficiency of the proposed method. The result so obtained are compared with the available exact solutions. In addition, proposed scheme is compared with some state of the art existing methods. It is found that the Haar wavelet operational matrix is the fastest. Moreover, the results obtained are mathematically simple and the desired accuracy of the solution is obtained using small number of grid points. The main advantages of the wavelet method are its simplicity, fast transformation, possibility of implementation of fast algorithms and low computational cost with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Grossmann, A., Morlet, J.: Decomposition of Hardy Functions into square integrable wavelets of constant shape. SIAM J. Math. Anal 15(4), 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Shore, J.E.: On the Application of Haar Functions. Naval Research Laboratory, Washington DC (1973)

    Book  Google Scholar 

  3. Ohkita, M.: Evaluation of analytic functions by generalized definite integration. Math. Comput. Simul. 27, 511–517 (1985)

    Article  MATH  Google Scholar 

  4. Haar, A., Haar, Alfred.: Zur Theorie de orthogonalen Funktionensysteme. Mathematische Annalen 69(3), 331–371 (1910)

  5. Engel, J.: Density estimation with Haar Series. Stat. Probab. Lett. 9, 111–117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yuguo, H.E., Sun, Jigui: Complete quantum circuit of Haar wavelet based MRA. Chin. Sci. Bull. 50, 1796–1798 (2005)

    Article  Google Scholar 

  7. Porwik, P., Lisowska, A.: The Haar wavelet transform in digital image processing its status and achievements. Mach. Graph. Vis. 13, 79–98 (2004)

    MATH  Google Scholar 

  8. Mallat, S.: A Wavelet Tour of Signal Processing. Academic, USA (2009)

    MATH  Google Scholar 

  9. Alajbegovic, H., Zecic, D., Huskanovic, A.: Image Compression Using the Haar Wavelet Transform. TMT (2009)

  10. Skobelev, S.P.: Application of extended boundary conditions and the Haar wavelets in the analysis of wave scattering of thin screens. J. Commun. Technol. Electron. 51(7), 748–758 (2006)

    Article  Google Scholar 

  11. Karimi, H.R., Lohmann, B.: Haar wavelet-based robust optimal control for vibration reduction of vehicle engine body system. Electr. Eng 89, 469–478 (2007)

    Article  Google Scholar 

  12. Kim, B.H., Park, T.: Application of multi-resolution analysis of wavelets to nondestructive damage evaluation: I. Theory. KSCE J. Civ. Eng. 9(6), 505–512 (2005)

    Article  Google Scholar 

  13. Tian, Y., Herzberg, A.M.: Estimation and optimal designs for linear Haar-wavelet models. Metrika 65, 311–324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Murtagh, F.: The Haar wavelet transform of a dendrogram. J. Classif. 24, 3–32 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kopenkov, V.N.: Efficient algorithms of local discrete wavelet transform with Haar-like bases. Patt. Recognit. Image Anal. 18(4), 654–661 (2008)

    Article  Google Scholar 

  16. Subramani, P., Sahu, R., Verma, S.: Feature selection using Haar wavelet power spectrum. Bioinformatics 7, 432 (2006)

    Google Scholar 

  17. Meyer, Y., Roques, S.: Progress in Wavelet Analysis and Applications, pp. 9–18. Frontiers Publishers (1993)

  18. Li, B., Chen, X.: Wavelet based numerical analysis: a review and classification. Finite Elem. Anal. Des. 81, 14–31 (2014)

    Article  MathSciNet  Google Scholar 

  19. Ohkita, M., Kobayashi, Y.: An application of rationalized Haar functions to solution of linear differential equations. IEEE Trans. Circ. Syst. 33(9), 853–862 (1986)

    Article  MATH  Google Scholar 

  20. Ohkita, M., Kobayashi, Y.: An Application of rationalized Haar functions to solution of linear partial differential equations. Math. Comput. Simul. 30, 419–428 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, C.F., Hsiao, C.H.: Wavelet approach to optimizing dynamic systems. IEE Proc. Control Theory Appl. 146(2), 213–219 (1999)

    Article  Google Scholar 

  22. Hsiao, C.H., Wang, W.J.: Optimalcontrol of linear time-varying systems via Haar wavelets. J. Optim. Theory Appl. 103(3), 641–655 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hsiao, C.H., Wang, W.J.: State analysis of time-varying singular non-linear systems via Haar wavelets. Math. Comput. Simul. 51, 91–100 (1999)

    Article  Google Scholar 

  24. Hsiao, C.H., Wang, W.J.: State analysis and optimal control of time-varying discrete systems via Haar wavelets. J. Optim. Theory Appl. 103(3), 623–640 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karimi, H.R.: A computational method for optimal control problem of time-varying state-delayed systems by Haar wavelets. Int. J. Comput. Math. 83(2), 235–246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hsiao, C.H., Wang, W.J.: State analysis of time-varying singular bilinear systems via Haar wavelets. Math. Comput. Simul. 52, 11–20 (2000)

    Article  MathSciNet  Google Scholar 

  27. Hsiao, C.H., Wang, W.J.: State analysis and parameter estimation of bilinear systems via Haar Wavelets. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 47(2), 246–250 (2000)

    Article  Google Scholar 

  28. Hsiao, C.H., Wang, W.J.: Haar wavelet approach to non-linear stiff systems. Math. Comput. Simul. 57, 347–353 (2001)

    Article  MATH  Google Scholar 

  29. Hsiao, C.H.: Haar wavelet approach to linear stiff systems. Math. Comput. Simul. 64, 561–567 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lepik, U.: Haar wavelet method for solving stiff differential equations. Math. Model. Anal. 14(4), 461–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Karimi, H.R., Maralani, P.J., Moshiri, B., Lohmann, B.: Numerically efficient approximations to the optimal control of linear singularly perturbed systems based on Haar wavelets. Int. J. Comput. Math. 82(4), 495–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Karimi, H.R., Moshiri, B., Lohmann, B., Maralani, P.J.: Haar wavelet-based approach for optimal control of second-order linear systems in time domain. J. Dyn. Control Syst. 11(2), 237–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Qasem, A.F.: Numerical solution for linear parabolic reaction-double diffusivity system using the operational matrices of the Haar wavelets method. J. Comp. Math. 5(1), 177–195 (2008)

    Google Scholar 

  34. Razzaghi, M., Ordokhani, Y.: An application of rationalized Haar functions for variational problems. Appl. Math. Comput. 122, 353–364 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Razzaghi, M., Ordokhani, Y.: Solution for a classical problem in the calculus of variations via rationalized Haar functions. Kybernetika 37(5), 575–583 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Hsiao, C.H.: Haar wavelet direct method for solving variational problems. Mathematics and Computers in Simulation 64, 569–585 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lepik, U.: Solution of optimal control problems via Haar wavelets. Int. J. Pure Appl. Math. 55(1), 81–94 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Dai, R., Cochran, J.E.: Wavelet collocation method for optimal control problems. J. Optim. Theory Appl. 143, 265–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marzban, H.R., Razzaghi, M.: Rationalized Haar approach for non-linear constrained optimal control problems. Appl. Math. Model. 34, 174–183 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. XVI, 909–996 (1988)

  41. Ryzhik, L.: Lecture Notes : The Haar functions and the Brownian motion. http://math.stanford.edu/~ryzhik (2012)

  42. Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of \(L^{2}({\mathbb{R}})\). Trans. Am. Math. Soc. 315(1), 69–87 (1989)

    MATH  Google Scholar 

  43. Boggess, A., Narcowich, F.J.: A first course of wavelets with Fourier Analysis. Wiley, USA (2009)

    MATH  Google Scholar 

  44. Ruch, D.K., Van Fleet, P.J.: Wavelet Theory—an Elementary Approach with Applications. Wiley, USA (2009)

    Book  MATH  Google Scholar 

  45. Chen, C.F., Hsiao, C.H.: Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc. Control Theory Appl. 144(1), 87–94 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lepik, U.: Exploring vibrations of cracked beams by the Haar wavelet method. Estonian J. Eng. 18(1), 58–75 (2012)

    Article  Google Scholar 

  47. Hsiao, C.H.: State analysis of linear time delayed systems via Haar wavelets. Math. Comput. Simul. 44, 457–470 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hariharan, G., Kannan, K.: Haar wavelet method for solving some nonlinear Parabolic equations. J. Math. Chem. 48, 1044–1061 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lepik, U.: Numerical solution of differential equations using Haar wavelets. Math. Comput. Simul. 68, 127–143 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Chang, P., Piau, P.: Haar wavelet matrices designation in numerical solution of ordinary differential equations. IAENG Int. J. Appl. Mathe. 38, 3 (2008)

  51. Mishra, V., Kaur, H., Mittal, R.C.: Haar wavelet algorithm for solving certain differential, integral and integro-differential equations. Int. J. Appl. Math. Mech. 8(6), 69–82 (2012)

    Google Scholar 

  52. Lepik, U., Tamme, E.: Applications of the Haar wavelets for solution of Linear Integral Equations, Dynamical Systems and Applications, Proceedings, Antalya, Turkey (2004), pp. 494–507

  53. Sunmonu, A.: Implementation of wavelet solutions to second order differential equations with maple. Appl. Math. Sci. 6(127), 6311–6326 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  55. Kaur, H., Mittal, R.C., Mishra, V.: Haar wavelet quasi-linearization approach for solving Lane Emden Equations. Int. J. Math. Comput. Appl. Res. 2(4), 47–60 (2012)

    Google Scholar 

  56. Kaur, H., Mittal, R.C., Mishra, V.: Haar wavelet quasi-linearization approach for solving nonlinear boundary value problems. Am. J. Comput. Math. 1, 176–182 (2011)

    Article  Google Scholar 

  57. Lepik, U., Tamme, E.: Solution of non-linear Fredholm integral equations via the Haar wavelet method. Proc. Estonian Acad. Sci. Phys. Math. 56(4), 17–27 (2007)

    MathSciNet  MATH  Google Scholar 

  58. Aziz, I., Islam, S.: New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. J. Comput. Appl. Math. 239, 333–345 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Derili, H., Sohrabi, S., Arzhang, A.: Two-dimensional wavelets for numerical solution of integral equations. Math. Sci. 6(5) (2012)

  60. Lepik, U.: Application of the Haar wavelet transform to solving integral and differential equations. Proc. Estonian Acad. Sci Phys. Math 56(1), 28–46 (2007)

    MathSciNet  MATH  Google Scholar 

  61. Shi, Z., Liu, T., Gao, B.: Haar wavelet method for solving wave equation. In: International Conference on Computer Application and System Modeling, pp. 561–564 (2010)

  62. Hariharan, G., Kannan, K.: A comparative study of a Haar wavelet method and a restrictive Taylor’s series method for solving convection-diffusion equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ismail, H.N.A., Elbarbary, E.M.E., Salem, G.S.E.: Restrictive Taylor as approximation for solving convection diffusion equation. Appl. Math. Comput. 147, 355–363 (2004)

    MathSciNet  MATH  Google Scholar 

  64. Erlebacher, G., Hussaini, M.Y., Jameson, L.M.: Wavelets: Theory and Application. Oxford University, Oxford (1996)

    MATH  Google Scholar 

  65. Hernandez, E., Weiss, G.: A First Course of Wavelets. CRC Press (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, A., Gupta, G., Sharma, M. et al. A Wavelet Based Rationalized Approach for the Numerical Solution of Differential and Integral Equations. Differ Equ Dyn Syst 27, 181–202 (2019). https://doi.org/10.1007/s12591-017-0393-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0393-3

Keywords

Navigation