Skip to main content
Log in

Numerical Solutions of Non-Linear System of Higher Order Volterra Integro-Differential Equations using Generalized STWS Technique

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we deal with non-linear system of higher order Volterra integro-differential equations and their numerical solutions using the Single Term Walsh Series (STWS) method. The connections between STWS coefficients of the unknown functions and its derivatives are derived. The non-linear system of Volterra integro-differential equations are converted into a system of non-linear algebraic equations using the Single Term Walsh Series coefficients. Solving these system of algebraic equations, we obtain the discrete numerical solutions of the non-linear Volterra integro-differential equations. Numerical examples are presented to show the efficiency and applicability of this STWS method for solving the non-linear system of higher order Volterra integro-differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbasbandy, S., Taati, A.: Numerical Solution of the System of Nonlinear Volterra Integro-Differential Equations with Nonlinear Differential Part by the Operational Tau Method and Error Estimation. J. Comput. Appl. Math. 231(1), 106–113 (2009)

    Article  MathSciNet  Google Scholar 

  2. Arikoglu, A., Ozkol, I.: Solutions of Integral and Integro-Differential Equation Systems by Using Differential Transform Method. Comput. Math. Appl. 56(9), 2411–2417 (2008)

    Article  MathSciNet  Google Scholar 

  3. Balachandran, K., Murugesan, K.: Analysis of Different Systems via Single-Term Walsh Series Method. Int. J. Comput. Math. 33(3–4), 171–179 (1990)

    Article  Google Scholar 

  4. Balachandran, K., Murugesan, K.: Analysis of Electronic Circuits using the Single-Term Walsh Series Approach. Int. J. Electron 69(3), 327–332 (1990)

    Article  Google Scholar 

  5. Balachandran, K., Murugesan, K.: Optimal Control of Singular Systems via Single-Term Walsh Series. Int. J. Comput. Math. 43(3–4), 153–159 (1992)

    Article  Google Scholar 

  6. Balakumar, V., Murugesan, K.: Single-Term Walsh Series Method for Systems of Linear Volterra Integral Equations of the Second Kind. Appl. Math. Comput. 228, 371–376 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bellomo, N., Firmani, B., Guerri, L.: Bifurcation Analysis for a Nonlinear System of Integro-Differential Equations Modelling Tumor-Immune Cells Competition. Appl. Math. Lett. 12(2), 39–44 (1999)

    Article  MathSciNet  Google Scholar 

  8. Berenguer, M., Garralda-Guillem, A., Ruiz Galán, M.: An Approximation Method for Solving Systems of Volterra Integro-Differential Equations. Appl. Numer. Math. 67, 126–135 (2013)

    Article  MathSciNet  Google Scholar 

  9. Biazar, J.: Solution of Systems of Integral-Differential Equations by Adomian Decomposition Method. Appl. Math. Comput. 168(2), 1232–1238 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Biazar, J., Aminikhah, H.: A New Technique for Solving Nonlinear Integral-Differential Equations. Comput. Math. Appl. 58(11), 2084–2090 (2009)

    Article  MathSciNet  Google Scholar 

  11. Biazar, J., Ebrahimi, H.: A Strong Method for Solving Systems of Integro-Differential Equations. Appl. Math. 2(09), 1105 (2011)

    Article  MathSciNet  Google Scholar 

  12. Biazar, J., Ghazvini, H., Eslami, M.: He Homotopy Perturbation Method for Systems of Integro-Differential Equations. Chaos Solitons Fractals 39(3), 1253–1258 (2009)

    Article  MathSciNet  Google Scholar 

  13. Chandra Guru Sekar, R., Balakumar, V., Murugesan, K.: Method of Solving Linear System of Volterra Integro-Differential Equations using the Single Term Walsh Series. Int. J. Appl. Comput. Math. (2015). doi:10.1007/s40819-015-0115-x

  14. Chandra Guru Sekar, R., Murugesan, K.: STWS Approach for Hammerstein System of Non-Linear Volterra Integral Equations of the Second Kind. Int. J. Comput. Math. (2016). doi:10.1080/00207160.2016.1247444

  15. Chandra Guru Sekar, R., Murugesan, K.: System of Linear Second Order Volterra Integro-Differential Equations Using Single Term Walsh Series Technique. Appl. Math. Comput. 273, 484–492 (2016)

  16. Ebadian, A., Khajehnasiri, A.A.: Block-Pulse Functions and their Applications to Solving Systems of Higher-Order Nonlinear Volterra Integro-Differential Equations. Electron. J. Differ. Equations 2014(54), 1–9 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Pushpam, A.E.K., Dhayabaran, D.P., Amirtharaj, E.H.: Numerical Solution of Higher Order Systems Of IVPs Using Generalized STWS Technique. Appl. Math. Comput. 180(1), 200–205 (2006)

  18. Hashim, I.: Adomian Decomposition Method for Solving bvps for Fourth-order Integro-differential Equations. J. Comput. Appl. Math. 193(2), 658–664 (2006)

    Article  MathSciNet  Google Scholar 

  19. Palanisamy, K.R.: Analysis and Optimal Control of Linear Systems via Single-Term Walsh Series Approach. Int. J. Syst. Sci. 12(4), 443–454 (1981)

    Article  MathSciNet  Google Scholar 

  20. Rao, G.P.: Piecewise Constant Orthogonal Functions and heir Application to Systems and Control, vol. 55. Springer, Berlin, Heidelberg, New York (1983)

    Book  Google Scholar 

  21. Rao, G.P., Palanisamy, K.R., Srinivasan, T.: Extension of Computation Beyond the Limit of Initial Normal Interval in Walsh Series Analysis of Dynamical Systems. IEEE Trans. Autom. Control 25(2), 317–319 (1980)

    Article  Google Scholar 

  22. Rashidinia, J., Tahmasebi, A.: Systems of Nonlinear Volterra Integro-Differential Equations. Numer. Algorithms 59(2), 197–212 (2012)

    Article  MathSciNet  Google Scholar 

  23. Sahu, P., Ray, S.S.: Legendre Wavelets Operational Method for the Numerical Solutions of Nonlinear Volterra Integro-Differential Equations System. Appl. Math. Comput. 256, 715–723 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Sannuti, P.: Analysis and synthesis of dynamic systems via block-pulse functions. In: Proceedings of the Institution of Electrical Engineers, pp. 569–571. IET (1977)

  25. Sepehrian, B.: Single-Term Walsh Series method for solving Volterra’s population model. Int. J. Appl. Math. Res. 3(4), 458–463 (2014)

    Article  Google Scholar 

  26. Sepehrian, B., Razzaghi, M.: Solution of Time-varying Singular Nonlinear Systems by Single-term Walsh Series. Math. Probl. Eng. 2003(3), 129–136 (2003)

    Article  Google Scholar 

  27. Sepehrian, B., Razzaghi, M.: Single-Term Walsh Series Method for the Volterra Integro-Differential Equations. Eng. Anal. Bound. Elem. 28(11), 1315–1319 (2004)

    Article  Google Scholar 

  28. Sepehrian, B., Razzaghi, M.: Solution of Nonlinear Volterra-Hammerstein Integral Equations via Single-Term Walsh Series Method. Math. Probl. Eng. 2005(5), 547–554 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors Mr. R. Chandra Guru Sekar would like to thank National Institute of Technology, Tiruchirappalli, for the financial support through Institute fellowship with Grant Number 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Murugesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, R.C.G., Murugesan, K. Numerical Solutions of Non-Linear System of Higher Order Volterra Integro-Differential Equations using Generalized STWS Technique. Differ Equ Dyn Syst 29, 609–621 (2021). https://doi.org/10.1007/s12591-017-0376-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0376-4

Keywords

Mathematics Subject Classification

Navigation