Skip to main content
Log in

An Analysis on Induced Numerical Oscillations by Lax-Friedrichs Scheme

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Induced numerical oscillations in the computed solution by monotone schemes for hyperbolic conservation laws has been a focus of recent studies. In this work using a local maximum principle, the monotone stable Lax-Friedrichs (LxF) scheme is investigated to explore the cause of induced local oscillations in the computed solution. It expounds upon that LxF scheme is locally unstable and therefore exhibits induced such oscillations. The carried out analysis gives a deeper insight to characterize the type of data extrema and the solution region which cause local oscillations. Numerical results for benchmark problems are also given to support the theoretical claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. See oscillatory conditions (7), (8) and remark 1.2, on page 969 in [3].

  2. In fact \(u(x,\tau )=u_{0}(x\, \pm \, \tau \,a)=u(x\, \pm \, \tau \,a,0)\).

  3. Sonic point is the one where characteristic speed changes its sign.

  4. Similar results are observed in case of systems.

References

  1. Boris, J.P., Book, D.L.: Flux-corrected transport. i. shasta, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Article  MATH  Google Scholar 

  2. Breuß, M.: The correct use of the lax-friedrichs method. ESAIM: Mathematical Modelling and Numerical Analysis, M2AN, pp. 519–540 (2004)

  3. Breuß, M.: An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws. ESAIM Math. Model. Num. Anal. 39(5), 965–994 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crandall, M.G., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1–21 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dubey, R.K.: Flux limited schemes: their classification and accuracy based on total variation stability regions. Appl. Math. Comput. 224, 325–336 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Dubey, R.K.: Total variation stability and second-order accuracy at extrema. Electron. J. Diff. Eqns. 20, 53–63 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Dubey, R.K., Biswas, B., Gupta, V.: Local maximum principle satisfying high order non-oscillatory schemes. Int. J. Num. Methods Fluids. doi:10.1002/fld.4202

  8. Laney, C.B., Caughey, D.: Extremum control. II—Semidiscrete approximations to conservation laws. Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics (1991)

  9. Laney, Culbert B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  10. Lax, Peter D.: Weak solutions of non-linear hyperbolic equations and their numerical approximation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MATH  Google Scholar 

  11. Lax, P.D., Wendroff, B.: Systems of conservation laws. Comm. Pure Appl. Math. 13, 217–237 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lefloach, P.G., Liu, J.G.: Generalized monotone schemes, discrete paths of extrema and discrete entropy conditions. Math. Comput. 68, 1025–1055 (1999)

    Article  MathSciNet  Google Scholar 

  13. LeVeque, R.J.: Numerical Methods for Conservation Laws. Lectures in mathematics ETH Zürich. Birkhäuser Basel, 2nd edn (1992)

  14. Li, J., Tang, H., Warnecke, G., Zhang, L.: Local oscillations in finite difference solutions of hyperbolic conservation laws. Math. Comput. 78, 1997–2018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J., Yang, Z.: Heuristic modified equation analysis of oscillations in numerical solutions of conservation laws. SIAM J. Num. Anal. 49, 2386–2406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–436 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50, 19–51 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sanders, R.: On the convergence of monotone finite difference schemes with variable spatial differencing. Math. Comput. 40, 91–106 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. Siam J. Num. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  21. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Dubey.

Additional information

Carried out work is financially supported by DST-SERB, New Delhi, India through project # SR/FTP/MS-015/2011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, R.K., Biswas, B. An Analysis on Induced Numerical Oscillations by Lax-Friedrichs Scheme. Differ Equ Dyn Syst 25, 151–168 (2017). https://doi.org/10.1007/s12591-016-0311-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0311-0

Keywords

Mathematics Subject Classification

Navigation