Skip to main content
Log in

Estimation of viscosity from passage time of liquids flowing through a microchannel array

  • Brief Communication
  • Published:
Journal of Biorheology

Abstract

Recently, a microchannel flow analyzer (MC-FAN) has been used to study the flow properties of blood. However, the correlation between blood passage time measured by use of the MC-FAN and hemorheology has not been clarified. In this study, a simple model is proposed for estimation of liquid viscosity from the passage time t p of liquids. The t p data for physiological saline were well represented by the model. According to the model, the viscosity of Newtonian fluids was estimated reasonably well from the t p data. For blood samples, although the viscosity \( \eta_{\text{mc}} \) estimated from t p was shown to be smaller than the viscosity \( \eta_{{450{\text{s}}^{ - 1} }} \) measured by use of a rotatory viscometer at a shear rate of 450 s−1, \( \eta_{\text{mc}} \) was correlated with \( \eta_{{450{\text{s}}^{ - 1} }} \). An empirical equation for estimation of \( \eta_{{450{\text{s}}^{ - 1} }} \) from \( \eta_{\text{mc}} \) of blood samples is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tzoulaki I, Murray GD, Lee AJ, Rumley A, Lowe GD, Fowkes GR. Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study. Circulation. 2007;115:2119–27.

    Article  Google Scholar 

  2. Lowe GD, Lee AJ, Rumley A, Price JF, Fowkes FG. Blood viscosity and risk of cardiovascular events: the Edinburgh Artery Study. Br J Haematol. 1997;96:168–73.

    Article  Google Scholar 

  3. Koenig W, Sund M, Filipiak B, Doering A, Loewel H, Ernst E. Plasma viscosity and the risk of coronary heart disease: results from the MONICA-Augsburg cohort study, 1984 to 1992. Arterioscler Thromb Vasc Biol. 1998;18:768–72.

    Article  Google Scholar 

  4. Seki K, Sumino H, Nara M, Ishiyama N, Nishino M, Murakami M. Relationships between blood rheology and age, body mass index, blood cell count, fibrinogen, and lipids in healthy subjects. Clin Hemorheol Microcirc. 2006;34:401–10.

    Google Scholar 

  5. Sumino H, Nara M, Seki K, Takahashi T, Kanda T, Ichikawa S, Goto-Onozato K, Koya S, Murakami M, Kurabayashi M. Effect of antihypertensive therapy on blood rheology in patients with essential hypertension. J Int Med Res. 2005;33:170–7.

    Google Scholar 

  6. Muranaka Y, Kunimoto F, Takita J, Sumino H, Nara M, Kuwano H, Murakami M. Impaired blood rheology in critically ill patients in intensive care unit. J Int Med Res. 2006;34:419–27.

    Google Scholar 

  7. Nara M, Sumino H, Nara M, Machida T, Amagai H, Nakajima K, Murakami M. Impaired blood rheology and elevated remnant-like lipoprotein particle cholesterol in hypercholesterolaemic subjects. J Int Med Res. 2009;37:308–17.

    Google Scholar 

  8. Machida T, Sumino H, Fukushima M, Kotajima N, Amagai H, Murakami M. Blood rheology and low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio in dyslipidemic and normolipidemic subjects. J Int Med Res. 2010;38:1975–84.

    Google Scholar 

  9. Kurihara T, Deguchi S, Kato J, Furakawa M, Tsuchiya M, Akimoto M, Ishiguro H, Hashimoto H, Niimi A, Maeda A, Shigemoto M, Yamashita K, Kawakami A, Umemura K, Nakashima M, Nakano T, Saniabadi AR. Impaired blood rheology by remnant-like lipoprotein particles: studies in patients with fatty liver disease. Clin Hemorheol Microcirc. 2001;24:217–25.

    Google Scholar 

  10. Lee CYJ, Kim KC, Park HW, et al. Rheological properties of erythrocytes from male hypercholesterolemia. Microvasc Res. 2004;67:133–8.

    Article  MATH  Google Scholar 

  11. Kikuchi Y, Sato K, Ohki H, Kaneko T. Optically accessible microchannels formed in a single-crystal silicon substrate for studies of blood rheology. Microvasc Res. 1992;44:226–40.

    Article  Google Scholar 

  12. Kikuchi Y, Sato K, Mizuguchi Y. Modified cell-flow microchannels in a single-crystal silicon substrate and flow behavior of blood cells. Microvasc Res. 1994;47:126–39.

    Article  Google Scholar 

  13. Bevington PR. Data reduction and error analysis for the physical sciences. New York: McGraw-Hill; 1969.

    Google Scholar 

  14. Shin S, Park MS, Ku Y, Jang JH, Suh JS. Simultaneous measurement of red blood cell aggregation and viscosity: light transmission slit rheometer. J Mech Sci Tech. 2005;19:209–15.

    Article  Google Scholar 

  15. Chien S, Usami S, Skalak R. Blood flow in small tubes. In: Renkin EM, Michel CC, editors. Handbook of Physiology, Section 2: The Cardiovascular system, Vol. IV. Microcirculation. Bethesda: American Physiological Society; 1984.

  16. Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol. 1992;263:H1771–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Maki.

About this article

Cite this article

Maki, Y., Endo, Y., Fukushima, M. et al. Estimation of viscosity from passage time of liquids flowing through a microchannel array. J Biorheol 26, 69–73 (2013). https://doi.org/10.1007/s12573-012-0048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12573-012-0048-5

Keywords

Navigation