Skip to main content
Log in

Fractional lower-order covariance (FLOC)-based estimation for multidimensional PAR(1) model with \(\alpha -\)stable noise

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Many real data exhibit periodic behavior. The periodic autoregressive moving average (PARMA) is one of the most common and useful model to describe these data. In the classical case, the PARMA model is considered by the assumption of Gaussian (or finite-variance) distribution of the noise. However, the Gaussian distribution seems to be unsuitable in many real applications, especially when the corresponding data exhibit impulsive-like behavior. Therefore, the extensions of the classical PARMA models are considered and the Gaussian distribution of the noise is replaced by the so-called heavy-tailed distribution. One of the most known distribution that can be used here is the \(\alpha -\) stable one. In this paper, we introduce a new estimation technique for the parameters of the multidimensional periodic autoregressive time series of order 1 (i.e., PAR(1)), which is based on fractional lower-order covariance, the alternative dependence measure adequate for \(\alpha -\)stable distributed models. From theoretical point of view, the use of this technique is justified as in this case the classical measure (i.e., covariance) is not defined. The practical aspect of this technique is discussed. The efficiency of the technique on simulated data is demonstrated using the Monte Carlo approach in different contexts, including the sample size and index of stability \(\alpha \) of the noise’s distribution. Lastly, we present the real data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The data are free available.

References

  1. Broszkiewicz-Suwaj, E., Makagon, A., Weron, R., Wyłomańska, A.: On detecting and modeling periodic correlation in financial data. Physica A Stat. Mech. Appl. 336(1–2), 196–205 (2004)

    Article  MathSciNet  Google Scholar 

  2. Franses, P.: Periodicity and Stochastic Trends in Economic Time Series. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  3. Brelsford, M., Jones, R.: Time series with periodic structure. Biometrika 54, 403–407 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bukofzer, D.: Optimum and suboptimum detector performance for signals in cyclostationary noise. J. Ocean. Eng. 12, 97–115 (1987)

    Article  Google Scholar 

  5. Donohue, K., Bressler, J., Varghese, T., Bilgutay, N.: Spectral correlation in ultrasonic pulse-echo signal processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 330–337 (1993)

    Article  Google Scholar 

  6. Fellingham, L., Sommer, F.: Ultrasonic characterization of tissue structure in the in vivo human liver and spleen. IEEE Trans. Son. Ultrason. 31, 418–428 (1984)

    Article  Google Scholar 

  7. Antoni, J.: Cyclostationarity by examples. Mech. Syst. Signal Process. 23(4), 987–1036 (2009)

    Article  Google Scholar 

  8. Antoni, J., Bonnardot, F., Raad, A., El Badaoui, M.: Cyclostationary modelling of rotating machine vibration signals. Mech. Syst. Signal Process. 18(6), 1285–1314 (2004)

    Article  Google Scholar 

  9. Bloomfield, P., Hurd, H., Lund, R.: Periodic correlation in stratospheric ozone time series. J. Time Series Anal. 15, 127–150 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dargaville, R., Doney, S., Fung, I.: Inter-annual variability in the interhemispheric atmospheric CO2 gradient. Tellus B 15, 711–722 (2003)

    Article  Google Scholar 

  11. Jones, R., Brelsford, W.: Time series with periodic structure. Biometrika 54, 403–8 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Troutman, B.: Some results in periodic autoregression. Biometrika 66, 219–228 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hipel,K. W. , McLeod,A. I.: Chapter 14 Periodic Models, in: Time Series Modelling of Water Resources and Environmental Systems, Vol. 45 of Developments in Water Science, Elsevier, pp. 483–524 (1994)

  14. Adams, G.J., Goodwin, G.C.: Parameter estimation for periodic ARMA models. J. Time Series Anal. 16(2), 127–145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lund, R., Basawa, I.V.: Recursive prediction and likelihood evaluation for periodic ARMA models. J. Time Series Anal. 21(1), 75–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Basawa, I.V., Lund, R.: Large sample properties of parameter estimates for periodic ARMA models. J. Time Series Anal. 22(6), 651–663 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shao, Q., Lund, R.: Computation and characterization of autocorrelations and partial autocorrelations in periodic ARMA models. J. Time Series Anal. 25(3), 359–372 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Anderson, P.L., Meerschaert, M.M.: Parameter estimation for periodically stationary time series. J. Time Series Anal. 26(4), 489–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ursu, E., Turkman, K.F.: Periodic autoregressive model identification using genetic algorithms. J. Time Series Anal. 33(3), 398–405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Anderson, P.L., Meerschaert, M.M., Zhang, K.: Forecasting with prediction intervals for periodic autoregressive moving average models. J. Time Series Anal. 34(2), 187–193 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  22. Jachan, M., Matz, G., Hlawatsch, F.: Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes. IEEE Trans. Signal Process. 55(9), 4366–4381 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Makagon, A., Weron, A., Wyłomańska, A.: Bounded solutions for ARMA model with varying coefficients. Appl. Math. 31, 273–285 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Zielinski, J., Bouaynaya, N., Schonfeld, D., O Neill, W.: Time-dependent ARMA modeling of genomic sequences. BMC Bioinform. 9(Suppl 9), S14 (2008)

    Article  Google Scholar 

  25. Hurd, H.L., Miamee, A.: Periodically Correlated Random Sequences: Spectral Theory and Practice, vol. 355. John Wiley & Sons, Hoboken (2007)

    Book  MATH  Google Scholar 

  26. Nowicka-Zagrajek, J., Weron, R.: Modeling electricity loads in California: ARMA models with hyperbolic noise. Signal Process. 82(12), 1903–1915 (2002)

    Article  MATH  Google Scholar 

  27. Palacios, M.B., Steel, M.F.J.: Non-Gaussian Bayesian geostatistical modeling. J. Am. Stat. Assoc. 101(474), 604–618 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gosoniu, L., Vounatsou, P., Sogoba, N., Smith, T.: Bayesian modelling of geostatistical malaria risk data. Geospat. Health 1(1), 127–139 (2006)

    Article  Google Scholar 

  29. Mittnik, S., Rachev, S.T.: Stable Paretian Models in Finance. Wiley, New York (2000)

    MATH  Google Scholar 

  30. Żak, G., Wyłomańska, A., Zimroz, R.: Periodically impulsive behaviour detection in noisy observation based on generalised fractional order dependency map. Appl. Acoust. 144, 31–39 (2019)

    Article  Google Scholar 

  31. Żak,G., Wyłomańska,A., Zimroz,R.: Data driven iterative vibration signal enhancement strategy using alpha-stable distribution, Shock and Vibration 2017 Article ID 3698370 (2017) 11 pages

  32. Chen, Z., Ding, S.X., Peng, T., Yang, C., Gui, W.: Fault detection for non-Gaussian processes using generalized canonical correlation analysis and randomized algorithms. IEEE Trans. Ind. Electron. 65(2), 1559–1567 (2018)

    Article  Google Scholar 

  33. Takayasu, H.: Stable distribution and Lévy process in fractal turbulence. Prog. Theo. Phys. 72(3), 471–479 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kruczek, P., Zimroz, R., Wyłomańska, A.: How to detect the cyclostationarity in heavy-tailed distributed signals. Signal Process. 172, 107514 (2020)

    Article  Google Scholar 

  35. Kruczek, P., Wyłomańska, A., Teuerle, M., Gajda, J.: The modified Yule-Walker method for alpha-stable time series models. Physica A 469, 588–603 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nowicka-Zagrajek, J., Wylomanska, A.: The dependence structure for parma models with alpha-stable innovations. Acta Physica Polonica 37(1), 3071–3081 (2006)

    Google Scholar 

  37. Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  38. Kozubowski, T.J., Panorska, A.K., Rachev, S.T.: Statistical issues in modeling multivariate stable portfolios. In: Rachev, S.T. (ed.) Handbook of Heavy Tailed Distributions in Finance. Handbooks in Finance, vol. 1, pp. 131–167. North-Holland, Amsterdam (2003)

    Chapter  Google Scholar 

  39. Nolan, J.P., Panorska, A.K.: Data analysis for heavy tailed multivariate samples. Commun. Stat. Stoch. Models 13(4), 687–702 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kozubowski, T.J., Panorska, A.K.: Multivariate geometric stable distributions in financial applications. Math. Comput. Modell. 29(10–12), 83–92 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stoyanov, S.V., Samorodnitsky, G., Rachev, S., Ortobelli, S.: Computing the portfolio conditional Value-at-Risk in the alpha-stable case. Probab. Math. Stat. 26, 1–22 (2006)

    MATH  Google Scholar 

  42. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  43. Nowicka, J.: Asymptotic behavior of the covariation and the codifference for ARMA models with stable innovations. Commun. Stat. Stoch. Models 13(4), 673–685 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kokoszka, P.S., Taqqu, M.S.: Fractional ARIMA with stable innovations. Stoch. Process. Appl. 60(1), 19–47 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rosadi, D., Deistler, M.: Estimating the codifference function of linear time series models with infinite variance. Metrika 73, 395–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rosadi, D.: Order identification for Gaussian moving averages using the codifference function. J. Stat. Comput. Simul. 76(6), 553–559 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wyłomańska, A., Chechkin, A., Sokolov, I.M., Gajda, J.: Codifference as a practical tool to measure interdependence. Physica A 421, 412–429 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu, T.-H., Mendel, J.M.: A subspace-based direction finding algorithm using fractional lower order statistics. IEEE Trans. Signal Process. 49(8), 1605–1613 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chen, Z., Geng, X., Yin, F.: A harmonic suppression method based on fractional lower order statistics for power system. IEEE Trans. Ind. Electron. 63(6), 3745–3755 (2016)

    Article  Google Scholar 

  50. Aalo, V.A., Ackie, A.-B.E., Mukasa, C.: Performance analysis of spectrum sensing schemes based on fractional lower order moments for cognitive radios in symmetric \(\alpha \)-stable noise environments. Signal Process. 154, 363–374 (2019)

    Article  Google Scholar 

  51. Grzesiek,A., Teuerle,M., Wyłomańska,A.: Cross-codifference for bidimensional VAR(1) models with infinite variance, Published online in Communications in Statistics - Simulation and Computation https://doi.org/10.1080/03610918.2019.1670840

  52. Grzesiek, A., Teuerle, M., Sikora, G., Wyłomańska, A.: Spatial-temporal dependence measures for \(\alpha -\)stable bivariate AR(1). J. Time Series Anal. 41(3), 454–475 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Stoica, P.: Generalized yule-walker equations and testing the orders of multivariate time series. Int. J. Control 37(5), 1159–1166 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  54. Basu, R.G.S.: A note on properties of spatial yule-walker estimators. J. Stat. Comput. Simul. 41(3–4), 243–255 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Choi, B.: On the covariance matrix estimators of the white noise process of a vector autoregressive model. Commun. Stat. Theory Methods 23, 249–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  56. Choi, B.: The asymptotic joint distribution of the yule-walker estimators of a causal multidimensional ar process. Commun. Stat. Theory Methods 30, 609–614 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  57. Gallagher, C.M.: A method for fitting stable autoregressive models using the autocovariation function. Stat. Probab. Lett. 53, 381–390 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kruczek, P., Żuławiński, W., Pagacz, P., Wyłomańska, A.: Fractional lower order covariance based-estimator for ornstein-uhlenbeck process with stable distribution. Math. Appl. 47(2), 259–292 (2019)

    MathSciNet  MATH  Google Scholar 

  59. Grzesiek, A., Sundar, S., Wyłomańska, A.: Fractional lower order covariance-based estimator for bidimensional AR(1) model with stable distribution. Int. J. Adv. Eng. Sci. Appl. Math. 11, 217–229 (2019)

    Article  MathSciNet  Google Scholar 

  60. Miller, G.: Properties of certain symmetric stable distributions. J. Multivar. Anal. 8(3), 346–360 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  61. Weron, A.: Stable processes and measures; a survey. In: Szynal, D., Weron, A. (eds.) Probability Theory on Vector Spaces III, pp. 306–364. Springer, Berlin, Heidelberg (1984)

    Chapter  Google Scholar 

  62. Zolotarev, V.M.: One-dimensional stable distributions, Translations of Mathematical Monographs. American Mathematical Society, Providence (1986)

  63. Nowicka-Zagrajek, J., Wyłomańska, A.: Measures of dependence for stable AR(1) models with time-varying coefficients. Stoch. Models 24(1), 58–70 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Grzesiek, A., Giri, P., Sundar, S., Wyłomańska, A.: Measures of cross-dependence for bidimensional periodic AR(1) model with \(\alpha -\)stable distribution. J. Time Series Anal. 41(6), 785–807 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  65. Grzesiek, A., Wylomanska, A.: Asymptotic behavior of the cross-dependence measures for bidimensional AR(1) model with \(\alpha -\)stable noise. Banach Center Publ. 122, 133–157 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zak, G., Teuerle, M., Wylomanska, A., Zimroz, R.: Measures of dependence for alpha-stable distributed processes and its application to diagnostics of local damage in presence of impulsive noise. Shock Vib. 6, 1–9 (2017)

    Google Scholar 

  67. Ma, N.C.X.: Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics. IEEE Trans. Signal Process. 44, 2669–2687 (1996)

    Article  Google Scholar 

  68. Peiris, M.S., Thavansewaran, A.: Multivariate stable ARMA processes with time dependent coefficients. Metrika 54, 131–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  69. Hourly elspot prices and volumes (hourly) in SE3 area, 14th August 2019 - 11th November 2019, available for free on https://www.nordpoolgroup.com/historical-market-data/ (column SE3)

  70. McCulloch,J. H.: Financial applications of stable distributions, in: Statistical Methods in Finance, Vol. 14 of Handbook of Statistics, Elsevier, (1996), pp. 393–425

  71. Borak, S., Misiorek, A., Weron, R.: Models for heavy-tailed asset returns. In: Statistical Tools for Finance and Insurance, pp. 21–55. Springer, Berlin (2011)

    Chapter  Google Scholar 

  72. Ocłoń, P., Łopata, S., Nowak, M.: Comparative study of conjugate gradient algorithms performance on the example of steady-state axisymmetric heat transfer problem. Arch. Thermodyn. 3, 15–44 (2013)

    Article  Google Scholar 

  73. Saad,Y.: Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, (2003)

  74. Barrett,R., Berry,M., Chan,T., Demmel, J., Donato,J., Dongarra,J., Eijkhout,V., Pozo,R., Romine,C., van der Vorst,H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Society for Industrial and Applied Mathematics, (1994)

  75. van der Vorst, H.: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of P. Giri and S. Sundar was supported by Indian Institute of Technology Madras, India, under the Project No. SB20210848MAMHRD008558 ”Centre for Computational Mathematics and Data Science, Department of Mathematics, IIT Madras Chennai India.” The work of A. Wyłomańska was supported by the National Center of Science under Opus Grant 2020/37/B/HS4/00120 ”Market risk model identification and validation using novel statistical, probabilistic, and machine learning tools.”

Author information

Authors and Affiliations

Authors

Contributions

[ S.S, A.W, P.G] contributed to conceptualization, [A.W, P.G] contributed to methodology, [ P.G] contributed to formal analysis and investigation, [P.G, A.W] contributed to writing—original draft preparation, [P.G, A.W] contributed to writing—review and editing, and [S.S, A.W] contributed to supervision.

Corresponding author

Correspondence to Prashant Giri.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Algorithms and additional tables

A Algorithms and additional tables

In this section, we show that how to solve the consistent system of Eq. (38). Since the FLOC-based matrix can be singular or non-singular, i.e., \(\widehat{\mathbf {R_d}}^{v-1}(0)\) may be singular or non-singular for each \(v = 1,\ldots ,T\). The following procedure (algorithm) can be used to solve the system of Eq. (38) in any case.

figure a

where BICGSTAB is a procedure (algorithm) for solving linear systems of equations \(\mathbf{A} x = b \) (for example) with preconditioning, where \(\mathbf{A} \) is the coefficient matrix, which may be singular or non-singular, \(\mathbf{x} \) is the unknown vector, and \(\mathbf{b} \) is the known vector. It is the most recent and up-to-date process. For more information on BICGSTAB, see [72,73,74,75].

Table 3 The table presents the medians and 90% confidence intervals of FLOC-based estimated PAR(1) model’s coefficient matrices of \(T=2\), where q are ranging from 1.0 to 1.5, and \(\alpha = 1.6\)
Table 4 The table presents the medians and 90% confidence intervals of FLOC-based estimated PAR(1) model’s coefficient matrices of \(T=2\), where q are ranging from 1.0 to 1.5, and \(\alpha = 1.6\)
Table 5 The table presents the medians and 90% confidence intervals of FLOC-based estimated PAR(1) model’s coefficient matrices of \(T=2\), where q are ranging from 1.0 to 1.5, and \(\alpha = 1.6\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, P., Sundar, S. & Wyłomańska, A. Fractional lower-order covariance (FLOC)-based estimation for multidimensional PAR(1) model with \(\alpha -\)stable noise. Int J Adv Eng Sci Appl Math 13, 215–235 (2021). https://doi.org/10.1007/s12572-021-00301-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-021-00301-0

Keywords

Navigation