Skip to main content
Log in

Design of an intake and a thruster for an atmosphere-breathing electric propulsion system

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Challenging space missions include those at very low altitudes, where the atmosphere is the source of aerodynamic drag on the spacecraft, that finally defines the mission’s lifetime, unless a way to compensate for it is provided. This environment is named Very Low Earth Orbit (VLEO) and it is defined for \(h<{450}{\mathrm{km}}\). In addition to the spacecraft’s aerodynamic design, to extend the lifetime of such missions, an efficient propulsion system is required. One solution is Atmosphere-Breathing Electric Propulsion (ABEP), in which the propulsion system collects the atmospheric particles to be used as propellant for an electric thruster. The system could remove the requirement of carrying propellant on-board, and could also be applied to any planetary body with atmosphere, enabling new missions at low altitude ranges for longer missions’ duration. One of the objectives of the H2020 DISCOVERER project, is the development of an intake and an electrode-less plasma thruster for an ABEP system. This article describes the characteristics of intake design and the respective final designs based on simulations, providing collection efficiencies up to \(94\%\). Furthermore, the radio frequency (RF) Helicon-based plasma thruster (IPT) is hereby presented as well, while its performances are being evaluated, the IPT has been operated with single atmospheric species as propellant, and has highlighted very low input power requirement for operation at comparable mass flow rates \(P\sim {60}{\mathrm{w}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABEP:

Atmosphere-breathing electric propulsion

DSMC:

Direct simulation Monte Carlo

FMF:

Free molecular flow

GSI:

Gas-surface interaction

IPT:

RF Helicon-based plasma thruster

VLEO:

Very low earth orbit

SC:

Spacecraft

References

  1. Roberts, P., Crisp, N., Abrao Oiko, V., Edmondson, S., Haigh, S., Huyton, C., Livadiotti, S., Lyons, R., Smith, K., Sinpetru, K., Straker, A., Worrall, S., Romano, F., Herdrich, G., Boxberger, A., Chan, Y.-A., Traub, C., Fasoulas, S., Smith, K., Outlaw, R., Becedas, J., Domínguez, R., González, D., Hanessian, V., Mølgaard, A., Nielsen, J., Bisgaard, M., Garcia-Almiñana, D., Rodriguez-Donaire, S., Sureda, M., Kataria, D., Villain, R., Perez, J. S., Conte, A., Belkouchi, B., Schwalber, A., Heißerer, B.: DISCOVERER - making commercial satellite operations in very low Earth orbit a reality, 70th International Astronautical Congress, Washington D.C., USA (IAC-19.C2.6.1x50774)

  2. Romano, F., Massuti-Ballester, B., Binder, T., Herdrich, G., Fasoulas, S., Schönherr, T.: System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster. Acta Astronaut. 147, 114–126 (2018). https://doi.org/10.1016/j.actaastro.2018.03.031

    Article  Google Scholar 

  3. Di Cara, D., Gonzalez del Amo, J., Santovincenzo, A., Domínguez, B. C., Arcioni, M., Caldwell, A., Roma, I.: RAM electric propulsion for low Earth orbit operation: an ESA study, 30th International Electric Propulsion Conference 2007, Florence, Italy (IEPC 2007 162)

  4. Cifali, G., Misuri, T., Rossetti, P., Andrenucci, M., Valentian, D., Feili, D., Lotz, B.: Experimental characterization of HET and RIT with atmospheric propellants, 32nd International Electric Propulsion Conference, Wiesbaden, Germany (IEPC 2011 224)

  5. Cifali, G., Dignani, D., Misuri, T., Rossetti, P., Andrenucci, M., Valentian, D., Marchandise, F., Feili, D., Lotz, B.: Completion of HET and RIT characterization with atmospheric propellants, Space Propulsion 2012, Bordeaux, France (SP2012 2355386)

  6. Fitatyev, A., Golikov, A., Nosachev, L., Skvortsov, V., Padalitsa, D.: Spacecraft with air-breathing electric propulsion as the future ultra-speed aircraft, 71st International Astronautical Congress, Online, The CyberSpace Edition (IAC-20,C4,6,8,x59643)

  7. Erofeev, A., Nikiforov, A., Popov, G., Suvorov, M., Syrin, S., Khartov, S.: Air-breathing ramjet electric propulsion for controlling low-orbit spacecraft motion to compensate for aerodynamic drag. Sol. Syst. Res. 51(7), 639–645 (2017)

    Article  Google Scholar 

  8. Filatyev, A.S., Yanova, O.V.: The control optimization of low-orbit spacecraft with electric ramjet. Acta Astronaut. 158, 23–31 (2019)

    Article  Google Scholar 

  9. Marov, M.Y., Filatyev, A.S.: Integrated studies of electric propulsion engines during flights in the earth’s ionosphere. Cosm. Res. 56(2), 123–129 (2018). https://doi.org/10.1134/S0010952518020041

    Article  Google Scholar 

  10. Erofeev, A. I.: Air intake in the transient regime of rarefied gas flow. TsAGI Sci. J. 49 (2)

  11. Kanev, S., Petukhov, V., Popov, G., Khartov, S.: Electro-rocket ramjet thruster for compensating the aerodynamic drag of a low-orbit spacecraft. Russian Aeronaut. (Iz VUZ) 58(3), 286–291 (2015)

    Article  Google Scholar 

  12. Fujita, K.: Air intake performance of air breathing ion engines. J. Jpn. Soc. Aeronaut. Space Sci. 52(610), 514–521 (2004). https://doi.org/10.2322/jjsass.52.514

    Article  Google Scholar 

  13. Fujita, K.: Air-intake performance estimation of air-breathing ion engines. Trans. Jpn. Soc. Mech. Eng. B 70(700), 3038–3044 (2004)

  14. Hisamoto, Y., Nishiyama, K., Kuninaka, H.: Development statue of atomic oxygen simulator for air breathing ion engine. In: 32nd Intern. Electric Propulsion Conference. IEPC 2011 (Wiesbaden, Germany, Sept. 11-15 2011): Proc (2011)

  15. Hisamoto, Y., Nishiyama, K., Kuninaka, H.: Design of air intake for air breathing ion engine, in: 63rd International Astronautical Congress, no. IAC-12,C4,4,10,x14578 (2012)

  16. Tagawa, M., Yokota, K., Nishiyama, K., Kuninaka, H., Yoshizawa, Y., Yamamoto, D., Tsuboi, T.: Experimental study of air breathing ion engine using laser detonation beam source. J. Propul. Power 29(3), 501–506 (2013). https://doi.org/10.2514/1.B34530

    Article  Google Scholar 

  17. Hohman, K.: Atmospheric breathing electric thruster for planetary exploration, Busek Co. Inc 11, 01760–1023 (2012)

    Google Scholar 

  18. Hohman, K.: Atmospheric breathing electric thruster for planetary exploration. Presented as the NIAC Spring Symposium, Presentation (2012)

  19. Barral, S., Cifali, G., Albertoni, R., Andrenucci, M., Walpot, L.: Conceptual design of an air-breathing electric propulsion system. In: Joint Conf. of 30th Int. Symp. on Space Technology and Science, 34th Int. Electric Propulsion Conf. and 6th Nano-Satellite Symp, (2015)

  20. Cifali, G., Andrenussi, T., Giannetti, V., Leoprini, A., Rossodivita, A., Andrenucci, M., Barral, S., Longo, J., Walpot, L.: Experimental validation of a RAM-EP concept based on Hall-effect thruster, Space Propulsion 2016, Rome, Italy (SP2016 3125202)

  21. Andreussi, T., Cifali, G., Giannetti, V., Piragino, A., Ferrato, E., Rossodivita, A., Andrenucci, M., Longo, J., Walpot, L.: Development and experimental validation of a Hall-effect thruster RAM-EP concept, 35th International Electric Propulsion Conference, Atlanta, USA (IEPC 2017 377)

  22. Andreussi, T., Ferrato, E., Giannetti, V., Piragino, A., Paissoni, C. A., Cifali, G., Andrenucci, M.: Development status and way forward of SITAEL’s air-breathing electric propulsion engine, in: AIAA Propulsion and Energy 2019 Forum, 3996, (2019)

  23. Ferrato, E., Giannetti, V., Piragino, A., Andrenucci, M., Andreussi, T., Paissoni, C. A.: Development roadmap of SITAEL’s RAM-EP system, 36th International Electric Propulsion Conference, Vienna, Austria (IEPC 2019 886)

  24. Dukhopelnikov, D.V., Riazanov, V.A., Shilov, S.O., Manegin, D.S., Sokolov, R.A.: Investigation of the laboratory model of a thruster with anode layer operating with air and nitrogen-oxygen mixture. AIP Conf. Proc. 2318(1), 040006 (2021). https://doi.org/10.1063/5.0036251

    Article  Google Scholar 

  25. Shabshelowitz, A.: Study of RF plasma technology applied to air-breathing electric propulsion, Ph.D. thesis, University of Michigan (2013)

  26. Romano, F., Chan, Y.-A., Herdrich, G., Traub, C., Fasoulas, S., Roberts, P., Smith, K., Edmondson, S., Haigh, S., Crisp, N., Oiko, V., Worrall, S., Livadiotti, S., Huyton, C., Sinpetru, L., Straker, A., Becedas, J., Domínguez, R., González, D., Cañas, V., Sulliotti-Linner, V., Hanessian, V., Mølgaard, A., Nielsen, J., Bisgaard, M., Garcia-Almiñana, D., Rodriguez-Donaire, S., Sureda, M., Kataria, D., Outlaw, R., Villain, R., Perez, J., Conte, A., Belkouchi, B., Schwalber, A., Heißerer, B.: RF Helicon-based Inductive Plasma Thruster (IPT) Design for an Atmosphere-Breathing Electric Propulsion system (ABEP). Acta Astronaut. 176, 476–483 (2020). https://doi.org/10.1016/j.actaastro.2020.07.008

    Article  Google Scholar 

  27. Leomanni, M., Garulli, A., Giannitrapani, A., Scortecci, F.: Propulsion options for very low earth orbit microsatellites. Acta Astronaut. 133, 444–454 (2017). https://doi.org/10.1016/j.actaastro.2016.11.001

    Article  Google Scholar 

  28. Schönherr, T., Komurasaki, K., Romano, F., Massuti-Ballester, B., Herdrich, G.: Analysis of atmosphere-breathing electric propulsion. Plasma Sci. IEEE Trans. 43(1), 287–294 (2015). https://doi.org/10.1109/TPS.2014.2364053

    Article  Google Scholar 

  29. Romano, F.: RF Helicon Plasma Thruster for an Atmosphere-Breathing Electric Propulsion System (ABEP). Verlag Dr, Hut (2022)

    Google Scholar 

  30. Vaidya, S., Traub, C., Romano, F., Herdrich, G., Chan, Y.-A., Fasoulas, S., Roberts, P., Crisp, N., Edmondson, S., Haigh, S. et al.: Development and analysis of novel mission scenarios based on atmosphere-breathing electric propulsion (ABEP). CEAS Space J. (2022) 1–18 https://doi.org/10.1007/s12567-022-00436-1

  31. Romano, F., Espinosa-Orozco, J., Pfeiffer, M., Herdrich, G., Crisp, N., Roberts, P., Holmes, B., Edmondson, S., Haigh, S., Livadiotti, S., Macario-Rojas, A., Oiko, V., Sinpetru, L., Smith, K., Becedas, J., Sulliotti-Linner, V., Bisgaard, M., Christensen, S., Hanessian, V., Jensen, T.K., Nielsen, J., Chan, Y.-A., Fasoulas, S., Traub, C., García-Almiñana, D., Rodríguez-Donaire, S., Sureda, M., Kataria, D., Belkouchi, B., Conte, A., Seminari, S., Villain, R.: Intake design for an Atmosphere-Breathing Electric Propulsion system (ABEP). Acta Astronaut. 187, 225–235 (2021). https://doi.org/10.1016/j.actaastro.2021.06.033

    Article  Google Scholar 

  32. Livadiotti, S., Crisp, N.H., Roberts, P.C., Worrall, S.D., Oiko, V.T., Edmondson, S., Haigh, S.J., Huyton, C., Smith, K.L., Sinpetru, L.A., Holmes, B.E., Becedas, J., Domínguez, R.M., Cañas, V., Christensen, S., Mølgaard, A., Nielsen, J., Bisgaard, M., Chan, Y.-A., Herdrich, G.H., Romano, F., Fasoulas, S., Traub, C., Garcia-Almiñana, D., Rodriguez-Donaire, S., Sureda, M., Kataria, D., Belkouchi, B., Conte, A., Perez, J.S., Villain, R., Outlaw, R.: A review of gas-surface interaction models for orbital aerodynamics applications. Prog. Aerosp. Sci. 119, 100675 (2020). https://doi.org/10.1016/j.paerosci.2020.100675

    Article  Google Scholar 

  33. C.-D. Munz, M. Auweter-Kurtz, S. Fasoulas, A. Mirza, P. Ortwein, M. Pfeiffer, T. Stindl, Coupled particle-in-cell and direct simulation monte carlo method for simulating reactive plasma flows, Comptes Rendus Mécanique 342 (10-11) (2014) 662 – 670, theoretical and numerical approaches for Vlasov-maxwell equations. http://dx.doi.org/10.1016/j.crme.2014.07.005

  34. Fasoulas, S., Munz, C.-D., Pfeiffer, M., Beyer, J., Binder, T., Copplestone, S., Mirza, A., Nizenkov, P., Ortwein, P., Reschke, W.: Combining particle-in-cell and direct simulation monte carlo for the simulation of reactive plasma flows. Phys. Fluids 31(7), 072006 (2019). https://doi.org/10.1063/1.5097638

    Article  Google Scholar 

  35. Chen, F.F.: Helicon discharges and sources: a review. Plasma Sources Sci. Technol. 24(1), 014001 (2015). https://doi.org/10.1088/0963-0252/24/1/014001

    Article  Google Scholar 

  36. Jacquier, R., Agnello, R., Duteil, B. P., Guittienne, P., Howling, A., Plyushchev, G., Marini, C., Simonin, A., Morgal, I., Bechu, S. et al.: First B-dot measurements in the RAID device, an alternative negative ion source for demo neutral beams, Fusion Engineering and Design https://doi.org/10.1016/j.fusengdes.2019.02.025

  37. Guittienne, P., Jacquier, R., Duteil, B.P., Howling, A.A., Agnello, R., Furno, I.: Helicon wave plasma generated by a resonant birdcage antenna: magnetic field measurements and analysis in the RAID linear device. Plasma Sources Sci. Technol. 30(7), 075023 (2021). https://doi.org/10.1088/1361-6595/ac0da3

    Article  Google Scholar 

  38. F. Romano, Y.-A. Chan, G. Herdrich, C. Traub, S. Fasoulas, P. Roberts, N. Crisp, B. Holmes, S. Edmonson, S. Haigh, S. Livadiotti, A. Macario-Rojes, V. Oiko, L. Sinpetru, K. Smith, J. Becedas, V. Sulliotti-Linner, M. Bisgaard, S. Christensen, V. Hanessian, T. K. Jensen, J. Nielsen, D. Garcia-Almiñana, M. G.-B. S. Rodrigue-Donaire, M. Sureda, D. Kataria, B. Belkouchi, A. Conte, S. Seminari., Design, set-up, and first ignition of the RF Helicon-based Plasma Thruster, Space Propulsion 2021, Online (SP2021 00247)

  39. Hey, F.G., Keller, A., Braxmaier, C., Tajmar, M., Johann, U., Weise, D.: Development of a highly precise micronewton thrust balance. IEEE Trans. Plasma Sci. 43(1), 234–239 (2014)

    Article  Google Scholar 

  40. Romano, F., Herdrich,G.,Chan, Y.-A., Roberts, P. C., Crisp, N. H., Macario Rojas, A.,Edmondson, S.,Haigh, S.,Holmes, B.,Livadiotti, S., Oiko, V. A.,Smith, K., Sinpetru, L., Becedas, J., Domínguez, R., Sulliotti-Linne, V., Christensen, S., Kauffman Jensen, T., Nielsen, J., Bisgaard, M., Fasoulas, S., Traub, C., Garcia-Almiñana, D., Garcia-Berenguer, M., Rodriguez-Donaire, S., Sureda, M., Kataria, D., Belkouchi, B., Conte, A., Seminari, S., Villain, R.: RF helicon-based plasma thruster (IPT): Design, set-up, and first ignition, 71st International Astronautical Congress, Online, The CyberSpace Edition (IAC-20,C4,5,11,x58032)

  41. Abrao Oiko,V., Roberts, P., Macario Rojas, A., Edmondson, S., Haigh, S., Holmes, B., Livadiotti, S., Crisp, N., Smith, K., Sinpetru, L., Becedas, J., Domínguez, R., Sulliotti-Linne, V., Christensen, S., Kauffman Jensen, T., Nielsen, J., Bisgaard, M., Chan, Y.-A., Herdrich, G., Romano, F., Fasoulas, S., Traub, C., Garcia-Almiñana, D., Garcia-Berenguer, M., Rodriguez-Donaire, S., Sureda, M., Kataria, D., Belkouchi, B., Conte, A., Seminari, S., Villain, R.: Ground-based experimental facility for orbital aerodynamics research: Design, construction and characterisation, in: 71st International Astronautical Congress (IAC) - The CyberSpace Edition, 12-14 October 2020, 2020

  42. Crisp, N., Roberts, P., Livadiotti, S., Macario Rojas, A., Oiko, V., Edmondson, S., Haigh, S., Holmes, B., Sinpetru, L., Smith, K., Becedas, J., Domínguez, R., Sulliotti-Linner, V., Christensen, S., Nielsen, J., Bisgaard, M., Chan, Y.-A., Fasoulas, S., Herdrich, G., Romano, F., Traub, C., García-Almiñana, D., Rodríguez-Donaire, S., Sureda, M., Kataria, D., Belkouchi, B., Conte, A., Seminari, S., Villain, R.: In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research). Acta Astron. 180, 85–99 (2021). https://doi.org/10.1016/j.actaastro.2020.12.024

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 737183. This reflects only the author’s view and the European Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Romano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, F., Herdrich, G., Chan, YA. et al. Design of an intake and a thruster for an atmosphere-breathing electric propulsion system. CEAS Space J 14, 707–715 (2022). https://doi.org/10.1007/s12567-022-00452-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-022-00452-1

Keywords

Navigation