Skip to main content
Log in

Metal 3D printing for RF/microwave high-frequency parts

  • Review Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Space Systems have been historically characterised by high performance, high reliability and high cost. Every new generation of space systems tends to improve performance, keep as much as possible reliability, speeding the lead time and lower the cost. Aggressive approach is nowadays followed by some of the players of the new space ecosystem where, for instance, reliability can be relaxed thanks for the in-orbit redundancy or robustness to failures by having a constellation with a high number of satellites. This push towards the technology and system limit requires to investigate new methods for the manufacturing of RF/Microwave parts. RF devices such as those based on waveguide structures, benefit from an additive manufacturing approach in terms of radio frequency (RF) performance and compactness. However each manufacturing approach comes with specific features and limitations which need to be well understood and, in some cases, even taking advantage of them. This paper provides a short review of some of the RF/Microwave parts already manufactured using this technology. The paper will focus mainly on metal 3D printing parts since this technology is, at the moment, well accepted by the space community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018)

    Article  Google Scholar 

  2. Vafadar, A., Guzzomi, F., Rassau, A., Hayward, K.: Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges. Appl. Sci. 11(3) (2021)

  3. Pragana, J., Sampaio, R., Bragança, I., Silva, C., Martins, P.: Hybrid metal additive manufacturing: a state-of-the-art review. Adv. Ind. Manuf. Eng. 2, 100032 (2021)

    Google Scholar 

  4. ESA-ESTEC, R., Division, S.: Processing and quality assurance requirements for metallic powder bed fusion technologies for space applications—ECSS-Q-ST-70-80C rev1. ECSS 1 (2021)

  5. ESA-ESTEC, R., Division, S.: Space environment—ECSS-E-ST-10-04C rev.1. ECSS 1 (2020)

  6. Ghidini, T.: Materials for space exploration and settlement. Prog. Mater. Sci. 846–850 (2018)

  7. Agency, E.S.: BepiColombo operating in extreme environments—ESA multimedia. ESA Multimedia (2018)

  8. ESA-ESTEC, R., Division, S.: Materials, processes and their data selection—ECSS-Q-ST-70-71C rev. 1. ECSS 1 (2019)

  9. Agency, E.S.: Juice industry day. EMITS (2015)

  10. Inigo, P., Roy, B., Anzalchi, J.: Application of photonics in next generation telecommunication satellites payloads. In: International Conference on Space Optics—ICSO 2014. SPIE (2017)

  11. Agency, E.S.: Eutelsat’s KA-SAT—RF filters in telecom satellite—ESA multimedia. ESA Multimedia (2017)

  12. Charrat, B., Merour, J.-M., Voisin, P., Laithier, J.-B.: The new generation of very high throughput satellite: wide band Ka, Q/V, full flexibility. In: 24th Ka and Broadband Communications Conference (2018)

  13. Panariello, A., Yassini, B., Ismail, M., Stajcer, T.: Recent advancement of passive components for HTS multiport power amplifiers. In: 24th Ka and Broadband Communications Conference (2018)

  14. Vallerotonda, P., Pelliccia, L., Tomassoni, C., Cacciamani, F., Sorrentino, R., Galdeano, J., Ernst, C.: Compact waveguide bandpass filters for broadband space applications in C and Ku-bands. In: 2019 European Microwave Conference in Central Europe (EuMCE), pp. 116–119 (2019)

  15. Arregui, I., Teberio, F., Arnedo, I., Percaz, J.M., Martin-Iglesias, P., Lopetegi, T., Laso, M.A.: High-power filter design in waveguide technology: future generation of waveguide satellite filters in payloads handling increasing bit rates and numbers of channels. IEEE Microw. Mag. 21(6), 46–57 (2020)

    Article  Google Scholar 

  16. Teberio, F., Arregui, I., Gomez-Torrent, A., Menargues, E., Laso, M.A.G., Vicente, C., Gil, J., Alonso, A., S.N., Martin-Iglesias, P., D.-M.M.: Assessment of electroforming for complex RF/microwave components. In: 2015 ESA/CNES International Workshop in Microwave Filters, pp. 1–8 (2015)

  17. Saad, T.: Microwave Engineers’ Handbook. Artech House, Dedham (1971)

    Google Scholar 

  18. Booth, P., Lluch, E.V.: Enhancing the performance of waveguide filters using additive manufacturing. Proc. IEEE 105(4), 613–619 (2017)

    Article  Google Scholar 

  19. Booth, P.A., Valles Lluch, E.: Realising advanced waveguide bandpass filters using additive manufacturing. IET Microw. Antennas Propag. 11(14), 1943–1948 (2017)

    Article  Google Scholar 

  20. Peverini, O.A., Lumia, M., Calignano, F., Addamo, G., Lorusso, M., Ambrosio, E.P., Manfredi, D., Virone, G.: Selective laser melting manufacturing of microwave waveguide devices. Proc. IEEE 105(4), 620–631 (2017)

    Article  Google Scholar 

  21. Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P.: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67, 2743–2751 (2012)

    Article  Google Scholar 

  22. Abbott, A.P., Nandhra, S., Postlethwaite, S., Smith, E.L., Ryder, K.S.: Electroless deposition of metallic silver from a choline chloride-based ionic liquid: a study using acoustic impedance spectroscopy, SEM and atomic force microscopy. Phys. Chem. Chem. Phys. 9, 3735–3743 (2007)

    Article  Google Scholar 

  23. ESA-ESTEC, R., Division, S.: Durability testing of coatings—ECSS-Q-ST-70-17C. ECSS 1(2018)

  24. Lapeña, E., Esteras, M., Celemín, E.: Metal 3D printing on s-band helix antenna. European Space Agency—Industry Days—Additive Manufacturing for RF/Microwave Parts (2018)

  25. Kilian, M., Schinagl-Weiß, A., Sommer, A., Hartwanger, C., Schneider, M.: Ku-band SFB-cluster manufactured by additive manufacturing techniques. In: 2019 13th European Conference on Antennas and Propagation (EuCAP), pp. 1–4 (2019)

  26. Kilian, M., Kassner, J., Soboll, P., Schneider, M.: Ku-band feed with integrated matrix power amplifier. In: 2021 15th European Conference on Antennas and Propagation (EuCAP), pp. 1–4 (2021)

  27. Calved, P.: Metal binder jetting : une opportunité pour la production de petits composants complexes en petite et moyenne série. Doss. Fabr. Addit. Trait. Matér. 452(452), 50–56 (2018)

    Google Scholar 

  28. Mostafaei, A., Elliott, A.M., Barnes, J.E., Li, F., Tan, W., Cramer, C.L., Nandwana, P., Chmielus, M.: Binder jet 3D printing-process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 119, 6 (2021)

    Article  Google Scholar 

  29. Huang, G.-L., Zhou, S.-G., Yuan, T.: Development of a wideband and high-efficiency waveguide-based compact antenna radiator with binder-jetting technique. IEEE Trans. Compon. Packag. Manuf. Technol. 7(2), 254–260 (2017)

    Google Scholar 

Download references

Acknowledgements

UPNA thanks the support of the Spanish Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación (MCIN/AEI/ 10.13039/501100011033) under Project PID2020-112545RB-C53.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Martín-Iglesias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Iglesias, P., Marechal, M., Calves, P. et al. Metal 3D printing for RF/microwave high-frequency parts. CEAS Space J 15, 7–25 (2023). https://doi.org/10.1007/s12567-022-00447-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-022-00447-y

Keywords

Navigation