Skip to main content
Log in

All-fiber versatile laser frequency reference at 2 μm for CO2 space-borne lidar applications

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

We present a frequency stabilized laser at 2051 nm based on a versatile all-fibered stabilization setup. A modulation sideband locking technique is implemented to lock the laser at a controlled frequency detuning from the center of the CO2 R(30) transition envisaged for space-borne differential absorption lidar (DIAL) applications. This method relies on the use of a compact all-fibered gas reference cell that makes the setup robust and immune to mechanically induced optical misalignments. The gas cell is fabricated using a hollow-core photonic crystal fiber filled with pure CO2 at a low pressure of ~20 mbar and hermetically sealed at both ends by splices to silica fibers. Different configurations of this fibered cell have been developed and are presented. With this technique, frequency stabilities below 40 kHz at 1-s integration time and <100 kHz up to 1000-s averaging time were achieved for a laser detuning by around 1 GHz from the center of the CO2 transition. These stabilities are compliant with typical requirements for the reference seed source for a space CO2 DIAL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. NASA: Shuttle Atmospheric Lidar Research Program: Final Report of Atmospheric Lidar Working Group. NASA SP No. 433 (Scientific and Technical Information Branch National Aeronautics and Space Administration, 1979)

  2. Weitkamp, C. (ed.): Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences, vol. 102. Springer, Berlin (2005)

    Google Scholar 

  3. Schotland R.M.: Some observation of the vertical profile of water vapor by a laser optical radar. In: Proceedings of 4th Symposium on Remote Sensing of the Environment, pp. 273–283 (1966)

  4. Kawa, S.R., Mao, J., Abshire, J.B., Collatz, G.J., Sun, X., Weaver, C.J.: Simulation studies for a space-based CO2 lidar mission. Tellus B 62, 759–769 (2010)

    Article  Google Scholar 

  5. A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), Report for Assessment ESA SP-1313/1 (2008)

  6. Ehret, G., Kiemle, C., Wirth, M., Amediek, A., Fix, A., Houweling, S.: Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys. B 90, 593–608 (2008)

    Article  Google Scholar 

  7. Menzies, R.T., Tratt, D.M.: Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements. Appl. Opt. 42, 6569–6577 (2003)

    Article  Google Scholar 

  8. Refaat, T.F., Singh, U.N., Yu, J., Petros, M., Ismail, S., Kavaya, M.J., Davis, K.J.: Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements. Appl. Opt. 54, 1387–1398 (2015)

    Article  Google Scholar 

  9. Allan, D.W.: Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966)

    Article  Google Scholar 

  10. Fix, A., Matthey, R., Amediek, A., Ehret, G., Gruet, F., Kiemle, C., Klein, V., Mileti, G., Pereira do Carmo, J., Quatrevalet, M.: Investigations on frequency and energy references for a space-borne integrated path differential absorption LIDAR. In: Proceedings ICSO-2014 (ESA Communication, 2014)

  11. Matthey, R., Gruet, F., Schilt, S., Mileti, G.: Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region. Opt. Lett. 40, 2576–2579 (2015)

    Article  Google Scholar 

  12. Matthey, R., Moreno, W., Gruet, F., Brochard, P., Schilt, S., Mileti, G.: Rb-stabilized laser at 1572 nm for CO2 monitoring. J. Phys. Conf. Ser. 723, 012034 (2016)

    Article  Google Scholar 

  13. Koch, G.J., Beyon, J.Y., Gibert, F., Barnes, B.W., Ismail, S., Petros, M., Petzar, P.J., Yu, J., Modlin, E.A., Davis, K.J., Singh, U.N.: Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements. Appl. Opt. 47, 944–956 (2008)

    Article  Google Scholar 

  14. Refaat, T.F., Petros, M., Antill, C.W., Singh, U.N., Yu, J.: Wavelength locking to CO2 absorption line-center for 2-μm pulsed IPDA lidar application. In: Proceedings of SPIE 9879 (Lidar Remote Sensing for Environmental Monitoring XV), pp. 987904–98711 (2016)

  15. Bertinetto, F., Bonanni, P., Gambini, P., Puleo, M., Vezzoni, E.: Performance and limitations of laser diodes stabilized to the sides of molecular absorption lines of ammonia. Rev. Sci. Instrum. (1998)

  16. Schilt, S., Matthey, R., Kauffmann-Werner, D., Affolderbach, C., Mileti, G., Thévenaz, L.: Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique. Appl. Opt. 47, 4336–4344 (2008)

    Article  Google Scholar 

  17. Bernard, V., Daussy, C., Nogues, G., Constantin, L., Durand, P.E., Amy-Klein, A., Van Lerberghe, A., Chardonnet, C.: CO2 laser stabilization to 0.1-Hz level using external electrooptic modulation. IEEE J. Quantum Electron. 33, 1282–1287 (1997)

    Article  Google Scholar 

  18. Nevsky, A., Alighanbari, S., Chen, Q.-F., Ernsting, I., Vasilyev, S., Schiller, S., Barwood, G., Gill, P., Poli, N., Tino, G.M.: Robust frequency stabilization of multiple spectroscopy lasers with large and tunable offset frequencies. Opt. Lett. 38, 4903–4906 (2013)

    Article  Google Scholar 

  19. Thorpe, J.I., Numata, K., Livas, J.: Laser frequency stabilization and control through offset sideband locking to optical cavities. Opt. Express 16, 15980–15990 (2008)

    Article  Google Scholar 

  20. Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.S.J., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)

    Article  Google Scholar 

  21. Benabid, F., Couny, F., Knight, J.C., Birks, T.A., Russell, P.S.J.: Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005)

    Article  Google Scholar 

  22. Dicaire, I.: Optical gas-phase frequency references based on photonic crystal technology: impact of slow light on molecular absorption. PhD Dissertation (EPFL, 2012)

  23. Supplee, J.M., Whittaker, E.A., Lenth, W.: Theoretical description of frequency modulation and wavelength modulation spectroscopy. Appl. Opt. 33, 6294–6302 (1994)

    Article  Google Scholar 

  24. Burkart, J., Romanini, D., Kassi, S.: Optical feedback stabilized laser tuned by single-sideband modulation. Opt. Lett. 38, 2062 (2013)

    Article  Google Scholar 

  25. Bomse, D.S., Stanton, A.C., Silver, J.A.: Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser. Appl. Opt. 31, 718–731 (1992)

    Article  Google Scholar 

  26. Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.-M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.-Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen-Ahmadi, N., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi-Cross, A., Rinsland, C.P., Rotger, M., Šimečková, M., Smith, M.A.H., Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009)

    Article  Google Scholar 

  27. Li, J., Durry, G., Cousin, J., Joly, L., Parvitte, B., Zeninari, V.: Self-induced pressure shift and temperature dependence measurements of CO2 at 2.05 μm with a tunable diode laser spectrometer. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 85, 74–78 (2012)

    Article  Google Scholar 

  28. Light, P.S., Couny, F., Benabid, F.: Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber. Opt. Lett. 31, 2538–2540 (2006)

    Article  Google Scholar 

  29. Dicaire, I., Beugnot, J.-C., Thévenaz, L.: Analytical modeling of the gas-filling dynamics in photonic crystal fibers. Appl. Opt. 49, 4604–4609 (2010)

    Article  Google Scholar 

  30. Schilt, S., Bucalovic, N., Tombez, L., Dolgovskiy, V., Schori, C., Di Domenico, G., Zaffalon, M., Thomann, P.: Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb. Rev. Sci. Instrum. 82, 123116 (2011)

    Article  Google Scholar 

  31. Wang, Y., Alharbi, M., Bradley, T.D., Fourcade-Dutin, C., Debord, B., Beaudou, B., Gerôme, F., Benabid, F.: Hollow-core photonic crystal fibre for high power laser beam delivery. High Power Laser Sci. Eng. 1, 17–28 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the European Space Agency (ESTEC contract no. 4000108041/13/NL/PA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Schilt.

Additional information

This paper is based on a presentation at the International Conference on Space Optics (ICSO), 18–21 October, 2016, Biarritz, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilt, S., Matthey, R., Hey Tow, K. et al. All-fiber versatile laser frequency reference at 2 μm for CO2 space-borne lidar applications. CEAS Space J 9, 493–505 (2017). https://doi.org/10.1007/s12567-017-0164-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-017-0164-6

Keywords

Navigation