Skip to main content
Log in

Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

An Erratum to this article was published on 22 November 2016

Abstract

The in-house direct simulation Monte Carlo solver PICLas, which enables parallel, three-dimensional simulations of rarefied gas flows, is verified and validated. Theoretical aspects of the method and the employed schemes are briefly discussed. Considered cases include simple reservoir simulations and complex re-entry geometries, which were selected from literature and simulated with PICLas. First, the chemistry module is verified using simple numerical and analytical solutions. Second, simulation results of the rarefied gas flow around a \(70^{\circ }\) blunted-cone, the REX Free-Flyer as well as multiple points of the re-entry trajectory of the Orion capsule are presented in terms of drag and heat flux. A comparison to experimental measurements as well as other numerical results shows an excellent agreement across the different simulation cases. An outlook on future code development and applications is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abe, T.: Inelastic collision model for vibrational-translational and vibrational-vibrational energy transfer in the direct simulation Monte Carlo method. Phys. Fluids. 6(9), 3175 (1994). doi:10.1063/1.868094. http://link.aip.org/link/PHFLE6/v6/i9/p3175/s1&Agg=doi

  2. Allègre, J., Bisch, D., Lengrand, J.C.: Experimental rarefied heat transfer at hypersonic conditions over 70-degree blunted cone. J. Spacecr. Rockets. 34(6), 724–728 (1997). doi:10.2514/2.3302. http://arc.aiaa.org/doi/abs/10.2514/2.3302

  3. Anderson, J.J.D.: Hypersonic and High-Temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Reston ,VA (2006). doi:10.2514/4.861956. http://arc.aiaa.org/doi/book/10.2514/4.861956

  4. Anonymous: Raumgleiter—REX-Free Flyer. http://www.dlr.de/bt/desktopdefault.aspx/tabid-6862/11316_read-26096/

  5. Baganoff, D., McDonald, J.D.: A collision-selection rule for a particle simulation method suited to vector computers. Phys. Fluids A Fluid Dyn. 2(7), 1248–1259 (1990). doi:10.1063/1.857625

    Article  Google Scholar 

  6. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 2nd edn. Oxford University Press, New York (1994)

    Google Scholar 

  7. Bird, G.A.: The DSMC Method. CreateSpace Independent Publishing Platform (2013)

  8. Bird, G.A., Gallis, M.a., Torczynski, J.R., Rader, D.J.: Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows. Phys. Fluids. 21(1) (2009). doi:10.1063/1.3067865

  9. Borgnakke, C., Larsen, P.S.: Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18(4), 405–420 (1975). doi:10.1016/0021-9991(75)90094-7. http://linkinghub.elsevier.com/retrieve/pii/0021999175900947

  10. Boyd, I.D.: Analysis of rotational nonequilibrium in standing shock waves of nitrogen. AIAA J. 28(11), 1997–1999 (1990). doi:10.2514/3.10511. http://arc.aiaa.org/doi/abs/10.2514/3.10511

  11. Boyd, I.D.: Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method. Phys. Fluids A Fluid Dyn. 3(7), 1785 (1991). doi:10.1063/1.857959. http://link.aip.org/link/PFADEB/v3/i7/p1785/s1&Agg=doi

  12. Boyd, I.D.: Modeling backward chemical rate processes in the direct simulation Monte Carlo method. Phys. Fluids. 19(12), 126,103 (2007). doi:10.1063/1.2825038. http://scitation.aip.org/content/aip/journal/pof2/19/12/10.1063/1.2825038

  13. Boyd, I.D.: Computation of hypersonic flows using the direct simulation Monte Carlo method. J. Spacecr. Rockets 52(1), 38–53 (2015)

    Article  Google Scholar 

  14. Burt, J.M., Boyd, I.D.: A hybrid particle approach for continuum and rarefied flow simulation. J. Comput. Phys. 228(2), 460–475 (2009). doi:10.1016/j.jcp.2008.09.022

    Article  MATH  Google Scholar 

  15. Gallis, M.A., Torczynski, J.R., Rader, D.J., Bird, G.A.: Convergence behavior of a new DSMC algorithm. J. Comput. Phys. 228(12), 4532–4548 (2009). doi:10.1016/j.jcp.2009.03.021

    Article  MATH  Google Scholar 

  16. Gao, D., Zhang, C., Schwartzentruber, T.E.: Particle simulations of planetary probe flows employing automated mesh refinement. J. Spacecr. Rockets. 48(3), 397–405 (2011). doi:10.2514/1.52129. http://arc.aiaa.org/doi/abs/10.2514/1.52129

  17. Haas, B.L.: Fundamentals of chemistry modeling applicable to a vectorized particle simulation. In: 5th Joint Thermophysics and Heat Transfer Conference. AIAA, Reston, Virginia (1990). doi:10.2514/6.1990-1749. http://arc.aiaa.org/doi/abs/10.2514/6.1990-1749

  18. Haas, B.L., McDonald, J.D.: Validation of chemistry models employed in a particle simulation method. J. Thermophys. Heat Transfer. 7(1), 42–48 (1993). doi:10.2514/3.11567. http://arc.aiaa.org/doi/abs/10.2514/3.11567

  19. Ivanov, M.S., Markelov, G.N., Gimelshein, S.F.: Statistical simulation of reactive rarefied flows—numerical approach and applications. In: 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia (1998). doi:10.2514/6.1998-2669. http://arc.aiaa.org/doi/abs/10.2514/6.1998-2669

  20. Alexander, J.F., Garcia, L.A.: The direct simulation Monte Carlo method. Comput. Phys. 11(6), 588–593 (1997). doi:10.1063/1.168619

    Article  Google Scholar 

  21. Klinkrad, H., Koppenwallner, G., Johannsmeier, D., Ivanov, M.S., Kashkovsky, A.V.: Free-molecular and transitional aerodynamics of spacecraft. Adv. Space Res. 16(12), 33–36 (1995). doi:10.1016/0273-1177(95)98775-J

    Article  Google Scholar 

  22. Lighthill, M.J.: Dynamics of a dissociating gas Part I Equilibrium flow. J. Fluid Mech. 2(01), 1–32 (1957). doi:10.1017/S0022112057000713. http://www.journals.cambridge.org/abstract_S0022112057000713

  23. Moss, J.N., Boyles, K., Greene, F.A.: Orion Aerodynamics for Hypersonic Free Molecular to Continuum Conditions. In: 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, pp. 6–9. AIAA, Reston, Virginia (2006). doi:10.2514/6.2006-8081. http://arc.aiaa.org/doi/abs/10.2514/6.2006-8081

  24. Moss, J.N., Dogra, V.K., Price, J.M., Hash, D.B.: Comparison of DSMC and experimental results for hypersonic external flows. In: 30th AIAA Thermophysics Conference. AIAA, Reston, Virginia (1995). doi:10.2514/6.1995-2028. http://arc.aiaa.org/doi/abs/10.2514/6.1995-2028

  25. Munz, C.D., Auweter-Kurtz, M., Fasoulas, S., Mirza, A., Ortwein, P., Pfeiffer, M., Stindl, T.: Coupled Particle-in-cell and direct simulation Monte Carlo method for simulating reactive plasma flows. Comptes Rendus Mécanique 342(10–11), 662–670 (2014). doi:10.1016/j.crme.2014.07.005. http://linkinghub.elsevier.com/retrieve/pii/S1631072114001442

  26. Nizenkov, P., Noeding, P., Konopka, M., Reimann, B., Fasoulas, S.: Numerical Investigation of the Aerodynamics of the REX-Free Flyer in the Rarefied Gas Regime. In: 30th International Symposium on Rarefied Gas Dynamics (to be published). Victoria, BC, Canada (2016)

  27. Ortwein, P., Binder, T., Copplestone, S., Mirza, A., Nizenkov, P., Pfeiffer, M., Stindl, T., Fasoulas, S., Munz, C.D.: Parallel Performance of a Discontinuous Galerkin Spectral Element Method Based PIC-DSMC Solver. In: High Performance Computing in Science and Engineering ’14, pp. 671–681. Springer International Publishing (2015). doi:10.1007/978-3-319-10810-0_44. http://link.springer.com/10.1007/978-3-319-10810-0_44

  28. Palharini, R.C., White, C., Scanlon, T.J., Brown, R.E., Borg, M.K., Reese, J.M.: Benchmark numerical simulations of rarefied non-reacting gas flows using an open-source DSMC code. Comput. Fluids. 120(1), 140–157 (2015). doi:10.1016/j.compfluid.2015.07.021. http://linkinghub.elsevier.com/retrieve/pii/S0045793015002558

  29. Pfeiffer, M., Mirza, A., Fasoulas, S.: A grid-independent particle pairing strategy for DSMC. J. Comput. Phys. 246, 28–36 (2013). doi:10.1016/j.jcp.2013.03.018. http://linkinghub.elsevier.com/retrieve/pii/S0021999113001964

  30. Pfeiffer, M., Nizenkov, P., Mirza, A., Fasoulas, S.: Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases. Phys. Fluids 28(2), 027,103 (2016). doi:10.1063/1.4940989. http://dx.doi.org/10.1063/1.4940989

  31. Scanlon, T.J., Roohi, E., White, C., Darbandi, M., Reese, J.M.: An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Comput. Fluids 39(10), 2078–2089 (2010). doi:10.1016/j.compfluid.2010.07.014. http://linkinghub.elsevier.com/retrieve/pii/S0045793010001891

  32. Schaaf, S.A., Talbot, L.: Mechanics of Rarefied Gases. In: Glass, I.I., Hall, J.G. (eds.) NAVORD Report 1488: Handbook of Supersonic Aerodynamics, vol. 5, Section 16. Johns Hopkins University Applied Physics Laboratory, Silver Spring, Maryland (1959)

  33. Schwartzentruber, T.E., Boyd, I.D.: Progress and future prospects for particle-based simulation of hypersonic flow. Prog. Aerosp. Sci. 72, 66–79 (2015). doi:10.1016/j.paerosci.2014.09.003. http://linkinghub.elsevier.com/retrieve/pii/S0376042114000827

  34. Stalder, J.R., Zurick, V.J.: Theoretical aerodynamic characteristics of bodies in a free-molecule-flow field. Tech. rep., Ames Aeronautical Laboratory, Moffett Field, California (1951). http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA381950

  35. Wagner, W.: A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66(3-4), 1011–1044 (1992). doi:10.1007/BF01055714. http://link.springer.com/10.1007/BF01055714

  36. Wilmoth, R.G., Blanchard, R.C., Moss, J.N.: Rarefied transitional bridging of blunt body aerodynamics. In: Brun, R. (ed.) Proceedings of the 21st International Symposium on Rarefied Gas Dynamics. Cépadues-Ed, Marseille, France (1999)

Download references

Acknowledgments

P. Nizenkov wishes to thank the Landesgraduiertenförderung Baden-Württemberg and Airbus DS GmbH for supporting the research. Computational resources have been provided by the High Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Nizenkov.

Additional information

This paper is based on a presentation at the 8th European Symposium on Aerothermodynamics for Space Vehicles, March 2–6, 2015, Lisbon, Portugal.

An erratum to this article is available at http://dx.doi.org/10.1007/s12567-016-0141-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizenkov, P., Noeding, P., Konopka, M. et al. Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications. CEAS Space J 9, 127–137 (2017). https://doi.org/10.1007/s12567-016-0133-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-016-0133-5

Keywords

Navigation