Skip to main content
Log in

Influence of hydrogen temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen

A new hydrogen temperature ramping experiment

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Since the late 1960s, low hydrogen injection temperature is known to have a destabilising effect on rocket engines with the propellant combination hydrogen/oxygen. Self-excited combustion instabilities of the first tangential mode have been found recently in a research rocket combustor operated with the propellant combination hydrogen/oxygen with a hydrogen temperature of 95 K. A hydrogen temperature ramping experiment has been performed with this research combustor to analyse the impact of hydrogen temperature on the self-excited combustion instabilities. The temperature was varied between 40 and 135 K. Contrary to past results found in literature, the combustor was found to be stable at low hydrogen temperatures while increased oscillation amplitudes of the first tangential mode were found at higher temperatures of around 100 K and above, which is consistent with previous observations of instabilities in this combustor. Further analysis shows that hydrogen temperature has a strong impact on the combustion chamber resonance frequencies. By varying the hydrogen injection temperature, the frequency of the first tangential mode is shifted to coincide with the second longitudinal resonance frequency of the liquid oxygen injector. Excitation of combustion chamber pressure oscillations was observed during such events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Anderson, W.E., Ryan, H.M., Santoro, R.J.: Combustion instability phenomena of importance to liquid bi-propellant rocket engine. In: 28th JANNAF Combustion Subcommittee Meeting (1991)

  2. Barrère, M., Williams, F.A.: Comparison of combustion instabilities found in various types of combustion chambers. In: Symposium (International) on Combustion, vol. 12, pp. 169–181. The Combustion Institute, Pittsburgh (1969). doi:10.1016/S0082-0784(69)80401-7

  3. Bendat, J.S., Piersol, A.G.: Engineering Applications of Correlation and Spectral Analysis. Wiley, New York (1993)

    MATH  Google Scholar 

  4. Bilstein, R.E.: Stages to saturn. NASA Special Publication, National Aeronautics and Space Administration, Washington DC (1980). NASA SP-4206

  5. Candel, S.: Combustion dynamics and control: progress and challenges. In: Proceedings of the Combustion Institute, vol. 29, pp. 1–28. The Combustion Institute (2002). doi:10.1016/S1540-7489(02)80007-4

  6. Chu, B.T.: Stability of Systems Containing a Heat Source—The Rayleigh Criterion. NACA Research Memorandum, National Advisory Committee for Aeronautics, Washington DC (1956). NACA RM 56D27

  7. Chu, B.T.: On the energy transfer to small disturbances in fluid flow (Part I). Acta Mech. 1(3), 215–234 (1965). doi:10.1007/BF01387235

    Article  Google Scholar 

  8. Conrad, E.W., Bloomer, H.E., Wanhainen, J.P., Vincent, D.W.: Interim summary of liquid rocket acoustic-mode-instability studies at a nominal thrust of 20 000 pounds. NASA Technical Note, NASA (1968). TN D-4968

  9. Crocco, L.: Aspects of combustion stability in liquid propellant rocket motors part I: fundamentals. low frequency instability with monopropellants. J. Am. Rocket Soc. 21(6), 163–178 (1951). doi:10.2514/8.4393

  10. Crocco, L.: Aspects of combustion stability in liquid propellant rocket motors part II: low frequency instability with bipropellants. High frequency instability. J. Am. Rocket Soc. 22(3), 7–16 (1952). doi:10.2514/8.4410

  11. Crocco, L., Cheng, S.I.: Theory of combustion instability in liquid propellant rocket motors. No. 8 in Agardograph. Butterworths Scientific Publications, London (1956). The Advisory Group for Aeronautical Research and Development North Atlantic Treaty Organization

  12. Culick, F.E.C., Yang, V.: Overview of combustion instabilities in liquid-propellant rocket engines. In: Yang, V., Anderson, W.E. (eds.) Liquid Rocket Engine Combustion Instability, Progress in Astronautics and Aeronautics, vol. 169, chap. 1, pp. 3–37. American Institute of Aeronautics and Astronautics, Washington DC (1995)

  13. Dowling, A.P., Ffowcs Williams, J.E.: Sound and Sources of Sound. Ellis Horwood Series in Engineering Science. Ellis Horwood Limited, Chichester (1983)

  14. Feiler, C.E., Heidmann, M.F.: Dynamic Response of Gaseous-Hydrogen Flow System and Its Application to High-Frequency Combustion Instability. NASA Technical Note, NASA Lewis Research Center, Cleveland (1967). NASA TN D-4040

  15. Fröhlke, K., Haberzettl, A., Haidn, O.J., Heinrich, S., Sion, M., Vuillermoz, P.: First hot fire test campaign at the french/german research facility P8. In: 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle (1997). doi:10.2514/6.1997-2929

  16. Gröning, S., Hardi, J., Suslov, D., Oschwald, M.: Analysis of phase shift between oscillations of pressure and flame radiation intensity of self-excited combustion instabilities. In: 6th European Conference for Aeronautics and Space Sciences (EUCASS), Krakow (2015)

  17. Gröning, S., Hardi, J.S., Suslov, D., Oschwald, M.: Injector-driven combustion instabilities in a hydrogen/oxygen rocket combustor. J. Propuls. Power 32(3), 560–573 (2016). doi:10.2514/1.B35768

  18. Gröning, S., Oschwald, M., Sattelmayer, T.: Selbst erregte tangentiale Moden in einer Raketenbrennkammer unter repräsentativen Bedingungen. In: 61. Deutscher Luft- und Raumfahrtkongress. Deutsche Gesellschaft für Luft- und Raumfahrt-Lilienthal-Oberth e.V. (DGLR), Berlin (2012)

  19. Gröning, S., Suslov, D., Oschwald, M., Sattelmayer, T.: Stability behaviour of a cylindrical rocket engine combustion chamber operated with liquid hydrogen and liquid oxygen. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich (2013)

  20. Haberzettl, A.: European research and technology test bench P8 for high pressure liquid rocket propellants. In: 36th AIAA/ASME/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama (2000). doi:10.2514/6.2000-3307. AIAA 2000-3307

  21. Hannum, N.P., Russell, L.M., Vincent, D.W., Conrad, E.W.: Some injector element detail effects on screech in Hydrogen-Oxygen rockets. NASA Technical Memorandum, Lewis Research Center, Cleveland (1974). NASA TM X-2982

  22. Hardi, J.: Experimental investigation of high frequency combustion instability in rocket engines. Ph.D. thesis, University of Adelaide (2012)

  23. Harrje, D.T., Reardon, F.H.: Liquid propellant rocket combustion instability. NASA Special Publication SP-194, NASA (1972)

  24. Hulka, J., Hutt, J.J.: Instability phenomena in liquid oxygen/hydrogen propellant rocket engines. In: Yang, V., Anderson, W.E. (eds.) Liquid Rocket Engine Combustion Instability, Progress in Astronautics and Aeronautics, vol. 169, chap. 2, pp. 39–71. American Institute of Aeronautics and Astronautics, Washington DC (1995)

  25. Hutt, J.J., Rocker, M.: High-frequency injection-coupled combustion instability. In: Yang, V., Anderson, W.E. (eds.) Liquid Rocket Engine Combustion Instability, Progress in Astronautics and Aeronautics, vol. 169, chap. 12, pp. 345–355. American Institute of Aeronautics and Astronautics, Washington DC (1995)

  26. Isakowitz, S.J.: International Guide to Space Launch Systems, 2nd edn. American Institute of Aeronautics and Astronautics, Washington DC (1995)

    Google Scholar 

  27. Jensen, R.J., Claflin, S.E., Dodson, H.C.: Liquid oxygen/methane combustion instability investigation. In: Hersh, A.S., Catton, I., Keltie, R.F. (eds.) The Winter Annual Meeting of the American Society of Mechanical Engineers, pp. 77–85. The American Society of Mechanical Engineers, San Francisco (1989)

    Google Scholar 

  28. Jensen, R.J., Dodson, H., Trueblood, B.: Oxygen/methane combustion stability investigations. In: Advanced Earth-to-Orbit Technology Conference, Huntsville (1988). N90-28628

  29. Jensen, R.J., Dodson, H.C., Claflin, S.E.: LOX/hydrocarbon combustion instability investigation. NASA Contractor Report, NASA Lewis Research Center, Cleveland (1989). NASA CR-182249

  30. Koschel, W., Haidn, O.J.: P8—the New French/German test facility for H\(_{2}\)/O\(_{2}\) high pressure rocket engine combustion research. Int. J. Hydrogen Energy 23(8), 683–694 (1998). doi:10.1016/S0360-3199(97)00088-8

    Article  Google Scholar 

  31. Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W.: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38(3), 721–748 (2009). doi:10.1063/1.3160306

    Article  Google Scholar 

  32. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0. Standard Reference Data Program (2007)

  33. Lux, J.: Flammenstabilisierung in einer Hochdruck-Raketenbrennkammer bei koaxialer Injektion von LOX/Methan. Ph.D. thesis, RWTH Aachen (2008)

  34. Micci, M.M.: Liquid Motor Combustion Stability Using Coaxial Injectors. The Pennsylvania State University Department of Aerospace Engineering, Tech. rep (1993)

  35. Micci, M.M., Gandilhon, D.: Shear coaxial injector LOX droplet measurements as a function of hydrogen temperature. At. Sprays 18(1), 85–96 (2008). doi:10.1615/AtomizSpr.v18.i1.30

    Article  Google Scholar 

  36. Nunome, Y., Onodera, T., Sasaki, M., Tomita, T., Kobayashi, K., Daimon, Y.: Combustion instability phenomena observed during cryogenic hydrogen injection temperature ramping tests for single coaxial injector elements. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego (2011). doi:10.2514/6.2011-6027. AIAA 2011-6027

  37. Nunome, Y., Takahashi, M., Kumakawa, A., Miyazaki, K., Yoshida, S., Onga, T.: High-frequency flame oscillation observed at a coaxial LOX/LH2 injector element. In: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartfort (2008). doi:10.2514/6.2008-4848. AIAA 2008-4848

  38. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  39. Putnam, A.A.: General considerations of autonomous combustion oscillations. In: Markstein, G.H. (ed.) Non-steady Flame Propagation, no. 75 in AGARDograph, chap. F, pp. 183–198. Pergamon Press, Oxford (1964). Published for and on behalf of Advisory Group for Aeronautical Research and Development North Atlantic Treaty Organization

  40. Rayleigh, J.W.S.: The explanation of certain acoustical phenomena. Nature 18(455), 319–321 (1878). doi:10.1038/018319a0

    Article  Google Scholar 

  41. Rayleigh, J.W.S.: The explanation of certain acoustical phenomena. In: Notices of the Proceedings at the Meetings of the Royal Institution of Great Britain with Abstracts of the Discourses delivered at the Evening Meetings, vol. 8, pp. 536–542. Royal Institution of Great Britain, William Clowes and Sons, London (1879)

  42. Ross, C.C., Datner, P.P.: Combustion instability in liquid-propellant rocket motors—a survey. In: Hawthorne, W.R., Fabri, J., Spalding, D.B. (eds.) Selected Combustion Problems, pp. 352–380. Butterworths Scientific Publications (1954). Advisory Group for Aeronautical Research and Development North Atlantic Treaty rganization

  43. Rossing, T.D. (ed.): Springer Handbook of Acoustics. Springer Science+Business Media, New York (2007)

    Google Scholar 

  44. Salmi, R.J., Wanhainen, J.P., Hannum, N.P.: Effect of thrust per element on combustion stability characteristics of hydrogen–oxygen rocket engines. NASA Technical Note, NASA Lewis Research Center, Cleveland (1968). NASA TN D-4851

  45. Schmidt, R., Wagner, W.: A new form of the equation of state for pure substances and its application to oxygen. Fluid Phase Equilibria 19(3), 175–200 (1985). doi:10.1016/0378-3812(85)87016-3

    Article  Google Scholar 

  46. Skudrzyk, E.: The Foundations of Acoustics Basic Mathematics and Basic Acoustics. Springer, Wien (1971)

    Book  MATH  Google Scholar 

  47. Sliphorst, M., Gröning, S., Oschwald, M.: Theoretical and experimental identification of acoustic spinning mode in a cylindrical combustor. J. Propuls. Power 27(1), 182–189 (2011). doi:10.2514/1.49230

    Article  Google Scholar 

  48. Stearns, S.D.: Digital Signal Analysis. Hayden Book Company, Rochelle Park (1975)

    MATH  Google Scholar 

  49. Stewart, R.B., Jacobsen, R.T., Wagner, W.: Thermodynamic properties of oxygen from the triple point to 300 K with pressures to 80 MPa. J. Phys. Chem. Ref. Data 20(5), 917–1021 (1991). doi:10.1063/1.555895

    Article  Google Scholar 

  50. Suslov, D., Kopp, W., Oschwald, M., Haberzettl, A.: Verfahren und Vorrichtung zur Temperaturbestimmung mittels eines Thermoelements. Europäische Patentanmeldung (2007). EP 1 793 215 A1

  51. Suslov, D., Woschnak, A., Sender, J., Oschwald, M.: Test specimen design and measurement technique for investigation of heat transfer processes in cooling channels of rocket engines under real thermal conditions. In: 39th AIAA/ASME/SAE/ASEE/JPC Conference and Exhibit, Huntsville (2003). AIAA 2003-4613. doi:10.2514/6.2003-4613

  52. Sutton, G.P., Biblarz, O.: Rocket Propulsion Elements, 7th edn. Wiley, New York (2001)

    Google Scholar 

  53. Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2), 387–535 (2002). doi:10.1063/1.1461829

    Article  Google Scholar 

  54. Wanhainen, J.P., Bloomer, H.E., Vincent, D.W., Curley, J.K.: Experimental investigation of acoustic liners to suppress screech in hydrogen–oxygen rockets. NASA Technical Note, NASA Lewis Research Center, Cleveland (1967). NASA TN D-3822

  55. Wanhainen, J.P., Feiler, C.E., Morgan, C.J.: Effect of chamber pressure, flow per element, and contraction ratio on acoustic-mode instability in hydrogen-oxygen rockets. NASA Technical Note, NASA Lewis Research Center, Cleveland (1968). NASA TN D-4733

  56. Wanhainen, J.P., Hannum, N.P., Russell, L.M.: Evaluation of screech suppression concepts in a 20000-pound thrust-hydrogen–oxygen rocket. NASA Technical Memorandum, NASA Lewis Research Center, Cleveland (1967). NASA TM X-1435

  57. Wanhainen, J.P., Morgan, C.J.: Effect of injection element radial distribution and chamber geometry on acoustic-mode instability in a hydrogen oxygen rocket. NASA Technical Note, NASA Lewis Research Center, Cleveland (1969). NASA TN D-5375

  58. Wanhainen, J.P., Parish, H.C., Conrad, E.W.: Effect of propellant injection velocity on screech in 20000-pound hydrogen-oxygen rocket engine. NASA Technical Note, NASA Lewis Research Center, Cleveland (1966). NASA TN D-3373

  59. Welch, P.D.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967). doi:10.1109/TAU.1967.1161901

    Article  Google Scholar 

  60. Zucrow, M.J., Hoffmann, J.D.: Gas Dynamics, vol. II, 2nd edn. Robert E. Krieger Publishing Company, Malabar (1985)

Download references

Acknowledgments

Research undertaken for this paper has been assisted with financial support from the DFG (German Research Foundation) in the framework of the SFB-TR 40. The authors are grateful to the crew of the P8 test bench as well as Philipp Groß and Mike Ziemßen for their efforts in performing the test runs on which the results presented here are based. Furthermore, the efforts of Joachim Sender concerning the design of the BKD combustor are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Gröning.

Additional information

This paper is based on a presentation at the Space Propulsion Conference, May 19–22, 2014, Cologne, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gröning, S., Hardi, J., Suslov, D. et al. Influence of hydrogen temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen. CEAS Space J 9, 59–76 (2017). https://doi.org/10.1007/s12567-016-0130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-016-0130-8

Keywords

Navigation