Skip to main content

Advertisement

Log in

Comparison of the retrosplenial cortex size between the degu (Octodon degus) and the Wistar rat (Rattus norvegicus)

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The degu (Octodon degus) is a rodent that normally constructs burrows for nesting and rearing. To navigate inside these burrows, degus may use idiothetic and/or sensory cues more than visual information, which is less effective in burrows. Spatial information for navigation is processed in several key brain regions including the retrosplenial cortex (RS). However, the structural characteristics of the degu RS have not been previously reported. The present study measured the sizes of the RS and constituent areas 29 and 30 in the degu, and compared these to those found in the rat, which is a terrestrial rodent. The proportion of the rostrocaudal length of the entire RS relative to that of the entire cortex was significantly larger in degus versus rats. The proportion of the rostrocaudal length of the RS at levels rostral to the splenium of the corpus callosum relative to that of the entire cortex was also significantly larger in degus versus rats. Furthermore, the ratio of the estimated volume of area 29 relative to that of area 30 was significantly larger in degus versus rats. These results show that the degu has a rostrocaudally longer rostral RS with a larger area 29 compared to the rat, which suggests that these structural features may be relevant to differences in spatial information processing between the fossorial degu and terrestrial rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

cc:

Corpus callosum

c-RS:

Caudal retrosplenial cortex

Cx:

Cortex

Ent:

Entorhinal cortex

L:

Layer

P:

Parietal cortex

Pre:

Presubiculum

r-RS:

Rostral retrosplenial cortex

RS:

Retrosplenial cortex

Sub:

Subiculum

V:

Visual cortex

29:

Area 29

30:

Area 30

References

  • Brotons-Mas JR, Schaffelhofer S, Guger C, O’Mara SM, Sanchez-Vives MV (2017) Heterogeneous spatial representation by different subpopulations of neurons in the subiculum. Neuroscience 343:174–189

    Article  CAS  Google Scholar 

  • Chen LL, Lin L-H, Green EJ, Barnes CA, McNaughton BL (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101:8–23

    Article  CAS  Google Scholar 

  • Colby LA, Rush HG, Mahoney MM, Lee TM (2012) Degu. In: Suckow MA, Stevens KA, Wilson RP (eds) The laboratory rabbit, guinea pig, hamster, and other rodents. Elsevier, London, pp 1032–1054

    Google Scholar 

  • Colonnello V, Iacobucci P, Fuchs T, Newberry RC, Panksepp J (2011) Octodon degus. A useful animal model for social-affective neuroscience research: basic description of separate distress, social attachments and play. Neurosci Biobehav Rev 35:1854–1863

    Article  Google Scholar 

  • Ebensperger LA, Bozinovic F (2000) Communal borrowing in the hystricognath rodent, Octodon degus: a benefit of sociality? Behav Ecol Sociobiol 47:365–369

    Article  Google Scholar 

  • Finch DM, Derian EL, Babb TL (1984) Afferent fibers to rat cingulate cortex. Exp Neurol 83:468–485

    Article  CAS  Google Scholar 

  • Fulk GW (1976) Notes on the activity, reproduction, and social behavior of Octodon degus. J Mammal 57:495–505

    Article  Google Scholar 

  • Hedrick BP, Dickson BV, Dumont ER, Pierce SE (2020) The evolutionary diversity of locomotor innovation in rodents is not linked to proximal limb morphology. Sci Rep 10:717

    Article  CAS  Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    Article  Google Scholar 

  • Honda Y, Ishizuka N (2015) Topographic distribution of cortical projection cells in the rat subiculum. Neurosci Res 92:1–20

    Article  Google Scholar 

  • Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179

    Article  Google Scholar 

  • Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol 519:3766–3801

    Article  Google Scholar 

  • Jeki V, Hauptman K, Knotek Z (2011) Diseases in pet degus: a retrospective study in 300 animals. J Small Anim Prac 52:107–112

    Article  Google Scholar 

  • Jones BF, Groenewegen HJ, Witter MP (2005) Intrinsic connections of the cingulate cortex in the rat suggest the existence of multiple functionally segregated networks. Neuroscience 133:193–207

    Article  CAS  Google Scholar 

  • Kádár E, Vico-Varela E, Aldavert-Vera L, Huguet G, Morgado-Bernal I, Segura-Torres P (2019) Increase in c-Fos and Arc protein in retrosplenial cortex after memory-improving lateral hypothalamic electrical stimulation treatment. Neurobiol Learn Mem 128:117–124

    Article  Google Scholar 

  • Kumazawa-Manita N, Hashikawa T, Iriki A (2018) The 3D stereotaxic brain atlas of the degu. Springer Japan, Tokyo

  • Lee T, Alloway KD, Kim U (2011) Interconnected cortical networks between primary somatosensory cortex septal columns and posterior parietal cortex in rat. J Comp Neurol 519:405–419

    Article  Google Scholar 

  • Milczarek MM, Vann SD, Sengpiel F (2018) Spatial memory engram in the mouse retrosplenial cortex. Curr Biol 28:1975–1980

    Article  CAS  Google Scholar 

  • Miyashita T, Rockland KS (2007) GABAergic projections from the hippocampus to the retrosplenial cortex in the rat. Eur J Neurosci 26:1193–1204

    Article  Google Scholar 

  • Naber PA, Witter MP (1998) Subicular efferents are organized mostly as parallel projections: a double-labeling, retrograde-tracing study in the rat. J Comp Neurol 393:284–297

    Article  CAS  Google Scholar 

  • Nelson AJD, Perry JC, Vann SD (2018) The Papez circuit and recognition memory: contributions of the medial diencephalon and retrosplenial cortex to what, where and when aspects of object recognition memory. In: Ennaceur A, De Souza Silva MA (eds) Handbook of object novelty recognition. Elsevier, London, pp 217–226

    Chapter  Google Scholar 

  • Olsen GM, Ohara S, Iijima T, Witter MP (2017) Parahippocampal and retrosplenial connections of rat posterior parietal cortex. Hippocampus 27:335–358

    Article  Google Scholar 

  • Pérez MJ, Cassini GH, Díaz MM (2021) The forelimbs of Octodonidae (Rodentia: Mammalia): substrate use, morphology, and phylogenetic signal. Zoology 144:125879

    Article  Google Scholar 

  • Pothuizen HHJ, Davies M, Albasser MM, Aggleton JP, Vann SD (2009) Granular and dysgranular retrosplenial cortices provide quantitatively different connections to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci 30:877–888

    Article  Google Scholar 

  • Pothuizen HHJ, Davies M, Aggleton JP, Vann SD (2010) Effects of selective granular retrosplenial cortex lesions on spatial working memory in rats. Behav Brain Res 208:566–575

    Article  Google Scholar 

  • Samuels JX, Van Valkenburgh BV (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269:1387–1411

    Article  Google Scholar 

  • Shibata H (1994) Terminal distribution of projections from the retrosplenial area to the retrohippocampal region in the rat, as studied by anterograde transport of biotinylated dextran amine. Neurosci Res 20:331–336

    Article  CAS  Google Scholar 

  • Shibata H, Naito J (2008) Organization of anterior cingulate and frontal cortical projections to the retrosplenial cortex in the rat. J Comp Neurol 506:30–45

    Article  Google Scholar 

  • Shibata H, Kondo S, Naito J (2004) Organization of retrosplenial cortical projections to the anterior cingulate, motor, and prefrontal cortices in the rat. Neurosci Res 49:1–11

    Article  Google Scholar 

  • Shibata H, Honda Y, Sasaki H, Naito J (2009) Organization of intrinsic connections of the retrosplenial cortex in the rat. Anat Sci Int 84:280–292

    Article  Google Scholar 

  • Sigwald EL, Bignante EA, De Olmos S, Lorenzo A (2019) Fear-context association during memory retrieval requires input from granular to dysgranular retrosplenial cortex. Neurobiol Learn Mem 163:107036

    Article  Google Scholar 

  • Sigwald EL, De Olmos S, Lorenzo A (2020) Retrograde and anterograde contextual fear amnesia induced by selective elimination of layer IV–Va neurons in the granular retrosplenial cortex (A29). Neurobiol Learn Mem 171:107229

    Article  CAS  Google Scholar 

  • Sul JH, Kim H, Huh N, Lee D, Jung MW (2010) Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66:449–460

    Article  CAS  Google Scholar 

  • Sul JH, Jo S, Lee D, Jung MW (2011) Role of rodent secondary motor cortex in value-based action selection. Nat Neurosci 14:1202–1208

    Article  CAS  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I Description and Quantitative Analysis. J Neurosci 10:420–435

    Article  CAS  Google Scholar 

  • Van Groen T, Wyss JM (1990a) Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol 300:593–606

    Article  Google Scholar 

  • Van Groen T, Wyss JM (1990b) Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, and bilateral hippocampal formation projections. J Comp Neurol 302:515–528

    Article  Google Scholar 

  • Van Groen T, Wyss JM (1992) Connections of the retrosplenial dysgranular cortex in the rat. J Comp Neurol 315:200–216

    Article  Google Scholar 

  • Van Groen T, Wyss JM (2003) Connections of the retrosplenial granular b cortex in the rat. J Comp Neurol 463:249–263

    Article  Google Scholar 

  • Van Groen T, Kadish I, Wyss JM (2004) Retrosplenial cortex lesions of area Rgb (but not of area Rga) impair spatial learning and memory in the rat. Behav Brain Res 154:483–491

    Article  Google Scholar 

  • Vann SD, Aggleton JP (2002) Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav Neurosci 116:85–94

    Article  Google Scholar 

  • Vann SD, Aggleton JP (2005) Selective dysgranular retrosplenial cortex lesions in rats disrupt allocentric performance of the radial-arm maze task. Behav Neurosci 119:1682–1686

    Article  Google Scholar 

  • Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10:792–802

    Article  CAS  Google Scholar 

  • Vogt BA (2015) Cingulate cortex and pain architecture. In: Paxinos G (ed) The rat nervous system. Elsevier, Amsterdam, pp 575–599

    Chapter  Google Scholar 

  • Vogt BA, Miller MW (1983) Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 216:192–210

    Article  CAS  Google Scholar 

  • Vogt BA, Paxinos G (2014) Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct 219:185–192

    Article  Google Scholar 

  • Whishaw IQ, Maaswinkel H, Gonzalez CLR, Kolb B (2001) Deficits in allothetic and idiothetic behavior in rats with posterior cingulate cortex lesions. Behav Brain Res 118:67–76

    Article  CAS  Google Scholar 

  • Whitlock JR, Sutherland RJ, Witter MP, Moser M-B, Moser EI (2008) Navigating from hippocampus to parietal cortex. Proc Nat Acad Sci USA 105:14755–14762

    Article  CAS  Google Scholar 

  • Woods CA, Boraker DK (1975) Octodon degus. Mamm Spec 67:1–5

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the annual funding (1306652) of the Tokyo University of Agriculture and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideshi Shibata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, H., Kigata, T. Comparison of the retrosplenial cortex size between the degu (Octodon degus) and the Wistar rat (Rattus norvegicus). Anat Sci Int 98, 36–42 (2023). https://doi.org/10.1007/s12565-022-00669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-022-00669-4

Keywords

Navigation