Skip to main content
Log in

A novel cadaveric study of the morphometry of the serratus anterior muscle: one part, two parts, three parts, four?

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The serratus anterior is portrayed as a homogeneous muscle in textbooks and during functional activities and rehabilitation exercises. It is unclear whether the serratus anterior is composed of subdivisions with distinctive morphology and functions. The purpose of this study was to determine whether the serratus anterior could be subdivided into different structural parts on the basis of its segmental architectural parameters. Eight formalin-embalmed serratus anterior muscles were dissected and the attachments of each fascicle documented. Orientation and size of each fascicle were measured and the physiological cross-sectional area (PCSA) calculated. Three subdivisions of the serratus anterior were identified. A new finding was the discovery of two distinctive fascicles attached to the superior and inferior aspects of rib 2. The rib 2 inferior fascicle had the largest PCSA (mean 1.6 cm2) and attached, with the rib 3 fascicle, along the medial border of the scapula to form the middle division. The rib 2 superior and rib 1 fascicles attached to the superior angle of the scapula (upper division). Fascicles from ribs 4–8/9 attached to the inferior angle of the scapula (lower division). Mean fascicle angle relative to a vertical midline reference and PCSA for each division were 29° and 1.3 cm2 (upper), 90° and 2.2 cm2 (middle) and 59° and 3.0 cm2 (lower). This novel study demonstrated the presence of morphologically distinct serratus anterior subdivisions. The results of this study will inform the development of optimal techniques for the assessment, treatment and rehabilitation of this architecturally complex muscle in shoulder and neck pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackland DC, Pak P, Richardson M, Pandy MG (2008) Moment arms of the muscles crossing the anatomical shoulder. J Anat 213:383–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Alizadehkhaiyat O, Hawkes DH, Kemp GJ, Frostick SP (2015) Electromyographic analysis of the shoulder girdle musculature during external rotation exercises. Orthop J Sports Med 3:2325967115613988

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertelli JA, Ghizoni MF (2005) Long thoracic nerve: anatomy and functional assessment. J Bone Joint Surg Am 87:993–998

    PubMed  Google Scholar 

  • Bogduk N, Johnson G, Spalding D (1998) The morphology and biomechanics of latissimus dorsi. Clin Biomech 13:377–385

    Article  Google Scholar 

  • Castelein B, Cools A, Bostyn E, Delemarre J, Lemahieu T, Cagnie B (2015) Analysis of scapular muscle EMG activity in patients with idiopathic neck pain: a systematic review. J Electromyogr Kinesiol 25:371–386

    Article  PubMed  Google Scholar 

  • Cicchetti DV (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 6:284–290

    Article  Google Scholar 

  • Cools AM, Struyf F, De Mey K, Maenhout A, Castelein B, Cagnie B (2014) Rehabilitation of scapular dyskinesis: from the office worker to the elite overhead athlete. Br J Sports Med 48:692–697

    Article  PubMed  Google Scholar 

  • Cuadros CL, Driscoll CL, Rothkopf DM (1995) The anatomy of the lower serratus anterior muscle: a fresh cadaver study. Plast Reconstr Surg 95:93–97

    Article  CAS  PubMed  Google Scholar 

  • De Foa JL, Forrest W, Biedermann HJ (1989) Muscle fibre direction of longissimus, iliocostalis and multifidus: landmark-derived reference lines. J Anat 163:243–247

    PubMed  PubMed Central  Google Scholar 

  • Drake R, Vogl AW, Mitchell AWM (2010) Gray’s anatomy for students. Churchill Livingstone, London

    Google Scholar 

  • Ebaugh DD, McClure PW, Karduna AR (2005) Three-dimensional scapulothoracic motion during active and passive arm elevation. Clin Biomech 20:700–709

    Article  Google Scholar 

  • Eisler P (1912) Die Muskelen des Stammes. Verlag von Gustav Fisher, Jena

    Google Scholar 

  • Ekstrom RA, Bifulco KM, Lopau CJ, Andersen CF, Gough JR (2004) Comparing the function of the upper and lower parts of the serratus anterior muscle using surface electromyography. J Orthop Sports Phys Ther 34:235–243

    Article  PubMed  Google Scholar 

  • Gottschalk F, Kourosh S, Leveau B (1989) The functional anatomy of tensor fasciae latae and gluteus medius and minimus. J Anat 166:179–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregg JR, Labosky D, Harty M, Lotke P, Ecker M, DiStefano V, Das M (1979) Serratus anterior paralysis in the young athlete. J Bone Joint Surg Am 61:825–832

    Article  CAS  PubMed  Google Scholar 

  • Ha SM, Kwon OY, Cynn HS, Lee WH, Park KN, Kim SH, Jung DY (2012) Comparison of electromyographic activity of the lower trapezius and serratus anterior muscle in different arm-lifting scapular posterior tilt exercises. Phys Ther Sport 13:227–232

    Article  PubMed  Google Scholar 

  • Hamada J, Igarashi E, Akita K, Mochizuki T (2008) A cadaveric study of the serratus anterior muscle and the long thoracic nerve. J Shoulder Elbow Surg 17:790–794

    Article  PubMed  Google Scholar 

  • Helgadottir H, Kristjansson E, Einarsson E, Karduna A, Jonsson H (2011) Altered activity of the serratus anterior during unilateral arm elevation in patients with cervical disorders. J Electromyogr Kinesiol 21:947–953

    Article  CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  CAS  PubMed  Google Scholar 

  • Holmgren T, Björnsson HH, Öberg B, Adolfsson L, Johansson K (2012) Effect of specific exercise strategy on need for surgery in patients with subacromial impingement syndrome: randomised controlled study. BMJ 20(344):e787

    Article  Google Scholar 

  • Huang TS, Ou HL, Huang CY, Lin JJ (2015) Specific kinematics and associated muscle activation in individuals with scapular dyskinesis. J Shoulder Elbow Surg 24:1227–1234

    Article  PubMed  Google Scholar 

  • Johnson G, Bogduk N, Nowitzke A (1994) Anatomy and actions of the trapezius muscle. Clin Biomech 9:44–50

    Article  CAS  Google Scholar 

  • Lear LJ, Gross MT (1998) An electromyographical analysis of the scapular stabilizing synergists during a push-up progression. J Orthop Sports Phys Ther 28:146–157

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Li Z, Sohail QZ, Jackson K, Fiume E, Agur A (2015) A three-dimensional approach to pennation angle estimation for human skeletal muscle. Comput Methods Biomech Biomed Eng 18:1474–1484

    Article  Google Scholar 

  • Ludewig PM, Cook TM (2000) Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther 80:276–291

    CAS  PubMed  Google Scholar 

  • Ludewig PM, Reynolds JF (2009) The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther 39:90–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludewig PM, Hoff MS, Osowski EE, Meschke SA, Rundquist PJ (2004) Relative balance of serratus anterior and upper trapezius muscle activity during push-up exercises. Am J Sports Med 32:484–493

    Article  PubMed  Google Scholar 

  • Maenhout A, Benzoor M, Werin M, Cools A (2016) Scapular muscle activity in a variety of plyometric exercises. J Electromyogr Kinesiol 27:39–45

    Article  PubMed  Google Scholar 

  • Martin RM, Fish DE (2008) Scapular winging: anatomical review, diagnosis, and treatments. Curr Rev Musculoskelet Med 1:1–11

    Article  PubMed  Google Scholar 

  • Moore KL, Daly AF, Agur AMR (2010) Clinically oriented anatomy. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  • Moseley JB Jr, Jobe FW, Pink M, Perry J, Tibone J (1992) EMG analysis of the scapular muscles during a shoulder rehabilitation program. Am J Sports Med 20:128–134

    Article  PubMed  Google Scholar 

  • Nasu H, Yamaguchi K, Nimura A, Akita K (2012) An anatomic study of structure and innervation of the serratus anterior muscle. Surg Radiol Anat 34:921–928

    Article  CAS  PubMed  Google Scholar 

  • Phillips S, Mercer S, Bogduk N (2008) Anatomy and biomechanics of quadratus lumborum. Proc Inst Mech Eng H 222:151–159

    Article  CAS  PubMed  Google Scholar 

  • Roren A, Fayad F, Poiraudeau S, Fermanian J, Revel M, Dumitrache A, Gautheron V, Roby-Brami A, Lefevre-Colau MM (2013) Specific scapular kinematic patterns to differentiate two forms of dynamic scapular winging. Clin Biomech 28:941–947

    Article  Google Scholar 

  • San Juan JG, Gunderson SR, Kane-Ronning K, Suprak DN (2016) Scapular kinematic is altered after electromyography biofeedback training. J Biomech 49:1881–1886

    Article  PubMed  Google Scholar 

  • Sheard B, Elliott J, Cagnie B, O’Leary S (2012) Evaluating serratus anterior muscle function in neck pain using muscle functional magnetic resonance imaging. J Manip Physiol Ther 35:629–635

    Article  Google Scholar 

  • Smith R Jr, Nyquist-Battie C, Clark M, Rains J (2003) Anatomical characteristics of the upper serratus anterior: cadaver dissection. J Orthop Sports Phys Ther 33:449–454

    Article  PubMed  Google Scholar 

  • Talbott NR, Witt DW (2013) Ultrasound imaging of the serratus anterior muscle at rest and during contraction. Clin Physiol Funct Imaging 33:192–200

    Article  PubMed  Google Scholar 

  • Ward SR, Lieber RL (2005) Density and hydration of fresh and fixed human skeletal muscle. J Biomech 38:2317–2320

    Article  PubMed  Google Scholar 

  • Witt D, Talbott N, Kotowski S (2011) Electromyographic activity of scapular muscles during diagonal patterns using elastic resistance and free weights. Int J Sports Phys Ther 6:322–332

    PubMed  PubMed Central  Google Scholar 

  • Worsley P, Warner M, Mottram S, Gadola S, Veeger H, Hermens H, Morrissey D, Little P, Cooper A, Carr A, Stokes M (2013) Motor control retraining exercises for shoulder impingement: effects on function, muscle activation and biomechanics in young adults. J Shoulder Elbow Surg 22:e11–e19

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the donors and their families for their generous gift.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Louise Webb.

Ethics declarations

Conflict of interest

Sarah Mottram is Director of Movement Performance Solutions, Ltd., and educates and trains sports, health and fitness professionals to better understand, prevent and manage musculoskeletal injury and pain that can impair movement and compromise performance in their patients, players and clients. The remaining authors have no conflict of interest to declare. No financial support or equities were provided by Movement Performance Solutions or other sources.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, A.L., O’Sullivan, E., Stokes, M. et al. A novel cadaveric study of the morphometry of the serratus anterior muscle: one part, two parts, three parts, four?. Anat Sci Int 93, 98–107 (2018). https://doi.org/10.1007/s12565-016-0379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0379-1

Keywords

Navigation