Skip to main content

Advertisement

Log in

In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Bone tissue engineering combines biomaterials with biologically active factors and cells to hold promise for reconstructing craniofacial defects. In this study the biological activity of biphasic hydroxyapatite ceramics (HA; a bone substitute that is a mixture of hydroxyapatite and β-tricalcium phosphate in fixed ratios) was characterized (1) in vitro by assessing the growth of MC3T3 mouse osteoblast lineage cells, (2) in ovo by using the chick chorioallantoic membrane (CAM) assay and (3) in an in vivo pig animal model. Biocompatibility, bioactivity, bone formation and biomaterial degradation were detected microscopically and by radiology and histology. HA ceramics alone demonstrated great biocompatibility on the CAM as well as bioactivity by increased proliferation and alkaline phosphatase secretion of mouse osteoblasts. The in vivo implantation of HA ceramics with bone marrow mesenchymal stem cells (MMSCs) showed de novo intramembranous bone healing of critical-size bone defects in the right lateral side of pig mandibular bodies after 3 and 9 weeks post-implantation. Compared with the HA ceramics without MMSCs, the progress of bone formation was slower with less-developed features. This article highlights the clinical use of microporous biphasic HA ceramics despite the unusually shaped elongated micropores with a high length/width aspect ratio (up to 20) and absence of preferable macropores (>100 µm) in bone regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC (2014) Tissue engineering in dentistry. J Dent 42:915–928

    Article  CAS  PubMed  Google Scholar 

  • Ball M, Grant DM, Lo WJ, Schotchford CA (2008) The effect of different surface morphology and roughness on osteoblast-like cells. J Biomed Mater Res Part A 86:637–647

    Article  Google Scholar 

  • Barérre F, van Blitterswijk C, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1:317–332

    Google Scholar 

  • Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental modls and biological mechanisms. Eur Cell Mater 21:407–429

    Article  CAS  PubMed  Google Scholar 

  • Biolusova G, Jun DH, King KB et al (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vivo and in vitro. Stem Cells 29:206–216

    Article  Google Scholar 

  • Bradamante S, Barenghi L, Maier JAM (2014) Stem cells toward the future: the space challange. Life (Basel) 4:267–280

    Google Scholar 

  • Campana V, Milano G, Pagano E et al (2014) Bone substitutes in orthopedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25:2445–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan O, Coathup MJ, Nesbitt A et al (2012) The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater 8:2788–2794

    Article  CAS  PubMed  Google Scholar 

  • Cheng YH, Zhao GJ, Li SL (2000) Bone dinamics of repair of mandibular defect with collagen/hydroxyapatite. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 14:159–161

    CAS  PubMed  Google Scholar 

  • Ciocca L, De Crescenzio F, Fantini M, Scotti R (2009) CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning:a pilot study. Comput Med Imaging Graph 33:58–62

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro-Spinetti E, de Mello W, Trindade LS, Taub DD, Taichman RS, Balduino A (2014) Human bone marrow mesenchymal progenitors: perspectives on an optimized in vitro manipulation. Front Cell Dev Biol. doi:10.3389/fcell.2014.00007

    PubMed  PubMed Central  Google Scholar 

  • Danko J, Simon F (2012) Veterinary dictionary. Ikar, Bratislava

    Google Scholar 

  • Danko J, Simon F, Artimova J (2011) Nomina anatomica veterinaria. University of Veterinary Medicine and Pharmacy, Kosice

    Google Scholar 

  • Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF (2001) Effect of surface rougness of hydroxyapatite on human bone marrow cell adhesion, proliferation and detachment strength. Biomaterials 22:87–96

    Article  CAS  PubMed  Google Scholar 

  • D’Lima JP, Paul J, Palathingal P, Varma B, Bhat M, Mohanty M (2014) Histological and histometrical evaluation of two synthetic hydroxyapatite based biomaterials in the experimental periodontal defects in dogs. J Clin Diagn Res 8:52–55

    Google Scholar 

  • Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Meng Z, Chen G et al (2012) Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng Part A 18:1239–1252

    Article  CAS  PubMed  Google Scholar 

  • Harvanova D, Hornak S, Amrichova J et al (2014) Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting. Vet Res Commun 38:221–228

    Article  PubMed  Google Scholar 

  • Havlik RJ (2002) Hydroxyapatite. Plast Reconstr Surg 110:1176–1179

    Article  PubMed  Google Scholar 

  • Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J (2009) Surface-and nonsurface-dependent in vitro effects of bone substitutes on cell viability. Clin Oral Invest 13:149–155

    Article  CAS  Google Scholar 

  • Jensen SS, Bornstein MM, Dard M, Bosshardt D, Buser D (2009) Comparative study of bisphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 90:171–181

    PubMed  Google Scholar 

  • Jiang H, Zuo Y, Zou Q et al (2013) Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nanohydroxyapatite membrane for bone regeneration. ASC Appl Mater Interfaces 5:12036–12044

    Article  CAS  Google Scholar 

  • Jimi E, Hirata S, Osawa K, Terashita M, Kitamura C, Fukushima H (2012) The current and future therapies of bone regeneration to repair bone defects. Int J Dent. doi:10.1155/2012/148261

    PubMed  PubMed Central  Google Scholar 

  • Keller JC, Collins JG, Niederauer GG, McGee TD (1997) In vitro attachment of osteoblast-like cells to osteoceramic materials. Dent Mater 13:62–68

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff M, Lenz S, Henkel KO et al (2011) Lateral augmentation of the mandible in minipigs with a synthetic nanostructured hydroxyapatite block. J Biomed Mater Res B Appl Biomater 96:342–350

    Article  PubMed  Google Scholar 

  • Kurashina K, Kurita H, Wu Q, Ohtsuka A, Kobayashi H (2002) Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials 23:407–412

    Article  CAS  PubMed  Google Scholar 

  • LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98

    Article  Google Scholar 

  • Lin FH, Liao CJ, Chen KS, Sun JS, Lin CP (2001) Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials 22:2981–2992

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang X, Horii A (2012) In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 4:2720–2727

    Article  CAS  PubMed  Google Scholar 

  • Lobo SE, Arinzeh TL (2010) Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 3:815–826

    Article  CAS  Google Scholar 

  • Mao JJ, Giannobile WV, Helms JA et al (2006) Craniofacial tissue engineering by stem cells. J Dent Res 85:966–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medvecky L, Giretova M, Stulajterova R (2012) Chemical modification of hydroxyapatite ceramic surface by calcium phosphate coatings and in vitro osteoblast response. Powder Metall Prog 12:224–233

    CAS  Google Scholar 

  • Mello A, Hong Z, Rossi AM et al (2007) Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Biomed Mater 2:67–77

    Article  CAS  PubMed  Google Scholar 

  • Musumeci G, Castrogiovanni P, Leonardi R et al (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Naujoks C, Langenbach F, Berr K et al (2011) Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J Biomater Appl 25:497–512

    Article  CAS  PubMed  Google Scholar 

  • Noshi T, Yoshikawa T, Ikeuchi M et al (2000) Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenic protein. J Biomed Mater Res 52:621–630

    Article  CAS  PubMed  Google Scholar 

  • Ong JL, Hoppe CA, Cardenas HL et al (1998) Osteoblast precursor cell activity on HA surfaces of different treatments. J Biomed Mat Res Part A 39:176–183

    Article  CAS  Google Scholar 

  • Pieri F, Lucarelli E, Corinaldesi G et al (2008) Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J Clin Periodontol 35:539–546

    Article  PubMed  Google Scholar 

  • Rajzer I, Menaszek E, Kwiatkowski R, Chrzanowski W (2014) Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med 25:1239–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Rumpel E, Wolf E, Kauschke E et al (2006) The biodegradation of hydroxyapatite bone graft substitues in vivo. Folia Morphol (Warsz) 65:43–48

    CAS  Google Scholar 

  • Smith LA, Liu X, Hu J, Ma PX (2010) The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 31:5526–5535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M (1991) Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164:37–50

    Article  CAS  PubMed  Google Scholar 

  • Tovar N, Jimbo R, Witek L et al (2014) The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materials. Mater Sci Eng C Mater Biol Appl 43:472–480

    Article  CAS  PubMed  Google Scholar 

  • Yoo JJ, Kim HJ, Seo SM, Oh KS (2014) Preparation of a hemiporous hydroxyapatite scaffold and evaluation as a cell-mediated bone substitute. Ceram Int 40:3079–3087

    Article  CAS  Google Scholar 

  • Yuann H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806

    Article  Google Scholar 

  • Yun JH, Han SH, Choi SH et al (2014) Effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on bone regeneration for osseointegration of dental implants: preliminary study in canine three-wall intrabony defects. J Biomed Mater Res B Appl Biomater 102:1021–1030

    Article  PubMed  Google Scholar 

  • Zhang Q, Lu H, Kawazoe N, Chen G (2013) Preparation of collagen scaffolds with controlled pore structures and improved mechanical property for cartilage tissue engineering. J Bioact Compat Polym 28:426–438

    Article  CAS  Google Scholar 

  • Zwadlo-Klarwasser G, Görlitz K, Hafemann B, Klee D, Klosterfalfen B (2001) The chorioallantoic membrane of the chick embryo as a simple model for the study of the angiogenic and inflammatory response to biomaterials. J Mater Sci Mater Med 12:195–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was realized within the framework of the project ITMS no. 26220120066 “Centre of excellence for biomedical technologies,” which is supported by the Operational Program “Research and Development” financed through the European Regional Development Fund and within the project of the Ministry of Education VEGA no. 1/0046/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Petrovova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomco, M., Petrovova, E., Giretova, M. et al. In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model. Anat Sci Int 92, 569–580 (2017). https://doi.org/10.1007/s12565-016-0362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0362-x

Keywords

Navigation